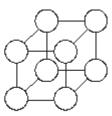

Q1.	(a)	(i) Define the term <i>relative atomic mass</i> (A _r) of an element.	
			(2)
	(ii)	A sample of the metal silver has the relative atomic mass of 107.9 and exists as two isotopes. In this sample, 54.0% of the silver atoms are one isotope with a relative mass of 107.1	
		Calculate the relative mass of the other silver isotope.	
		State why the isotopes of silver have identical chemical properties.	
			(4)
(b)	The	isotopes of silver, when vaporised, can be separated in a mass spectrometer.	
		ne the three processes that occur in a mass spectrometer before the vaporised opes can be detected.	
	Stat	e how each process is achieved.	


		(6)
		(0)
(c)	State the type of bonding involved in silver.	
	Draw a diagram to show how the particles are arranged in a silver lattice and show the charges on the particles.	
		(2)
		(3)
(d)	Silver reacts with fluorine to form silver fluoride (AgF).	
	Silver fluoride has a high melting point and has a structure similar to that of sodium chloride.	
	State the type of bonding involved in silver fluoride.	
	Draw a diagram to show how the particles are arranged in a silver fluoride lattice	

and show the charges on the particles.
Explain why the melting point of silver fluoride is high.

- **Q2.** At room temperature, both sodium metal and sodium chloride are crystalline solids which contain ions.
 - (a) On the diagrams for sodium metal and sodium chloride below, mark the charge for each ion.

Sodium metal

Sodium chloride

(2)

(Total 20 marks)

(b)	(i)	Explain how the ions are held together in solid sodium metal.	
	(ii)	Explain how the ions are held together in solid sodium chloride.	
	` ,		
	(iii)	The melting point of sodium chloride is much higher than that of sodium metal. What can be deduced from this information?	
			(3)
(c)		npare the electrical conductivity of solid sodium metal with that of solid sodium ride. Explain your answer.	
		parison	
	Expl	anation	
(d)	Evnl	lain why sodium metal is malleable (can be hammered into shape).	(3)
(.		an my social motor is maneable (can be naminored into shape).	(1)

(e)		um chlorate(V), NaC ne and 45.1% by m		% by mass of sod	ium, 33.3% by i	mass of
	(i)	Use the above data is NaClO₃	a to show that the e	mpirical formula	of sodium chlor	ate(V)
	. ,	Sodium chlorate(V) sodium hydroxide Cl₂ + NaC	Balance the equation	on for this reaction	n below.	eous (3 ⁻ otal 12 marks
	(a) (Complete the follow	ing table.			
ticle		Relative charge	Relative mass			
ton						

Particle Relative charge Relative mass

Proton

Neutron

Electron

(3)

(b) An atom of element **Z** has two more protons and two more neutrons than an atom of $^{34}_{16}$ $^{\circ}$. Give the symbol, including mass number and atomic number, for this atom of **Z**.

Q3.

			(2)
(c)	Com S²	plete the electronic configurations for the sulphur atom, S, and the sulphide ion,	
	S	1s²	
	S ²⁻	1s ²	(2)
(d)	State	e the block in the Periodic Table in which sulphur is placed and explain your ver.	
	Bloci	· · · · · · · · · · · · · · · · · · ·	
	Expla	anation	(2)
(e)		um sulphide, Na ₂ S, is a high melting point solid which conducts electricity when en. Carbon disulphide, CS ₂ , is a liquid which does not conduct electricity.	
	(i)	Deduce the type of bonding present in Na ₂ S and that present in CS ₂	
		Bonding in Na₂S	
		Bonding in CS ₂	
	(ii)	By reference to all the atoms involved explain, in terms of electrons, how Na ₂ S is formed from its atoms.	
	(iii)	Draw a diagram, including all the outer electrons, to represent the bonding present in CS ₂	

(iv)	When heated with steam, CS ₂ reacts to form hydrogen sulphide, H ₂ S, and carbon dioxide.
	Write an equation for this reaction.
	(7)
	(Total 16 narks)