Q1.What is	s the formula o	of calcium nitrate(V)?				
Α	CaNO₃	0				
В	Ca(NO ₃) ₂	0				
С	Ca ₂ NO ₂	0				
D	Ca(NO ₂) ₂	0				
		(Total 1 mark			
Q2.Some a	airbags in cars	s contain sodium azide (NaN₃).				
(a) Sodium azide is made by reacting dinitrogen monoxide gas with sodium amic (NaNH ₂) as shown by the equation.						
		$2NaNH_2 + N_2O \longrightarrow NaN_3 + NaOH + NH_3$				
Calculate the mass of sodium amide needed to obtain 550 g of sodium azid assuming there is a 95.0% yield of sodium azide. Give your answer to 3 significant figures.						
			(5			
(b)		volved in a serious collision, the sodium azide decomposes to formation as shown in the equation.	n			
		$2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$				

Page 2

The nitrogen produced then inflates the airbag to a volume of $7.50 \times 10^{-2} \, \text{m}^3$ at a

Sodium azide is toxic. It can be destroved by reaction with an a	cidified solution of
	cidified solution of
nitrous acid (HNO ₂) as shown in the equation. $2NaN_3 + 2HNO_2 + 2HCI \longrightarrow 3N_2 + 2NO + 2NaC$	CI + 2H₂O
 A 500 cm³ volume of the nitrous acid solution was used to 150 g of the sodium azide. 	Cl + 2H₂O destroy completel
nitrous acid (HNO ₂) as shown in the equation. $2NaN_3 + 2HNO_2 + 2HCI \longrightarrow 3N_2 + 2NO + 2NaO$ i) A 500 cm ³ volume of the nitrous acid solution was used to	Cl + 2H₂O destroy completel
nitrous acid (HNO₂) as shown in the equation. 2NaN₃ + 2HNO₂ + 2HCl → 3N₂ + 2NO + 2NaO i) A 500 cm³ volume of the nitrous acid solution was used to 150 g of the sodium azide.	Cl + 2H₂O destroy completel
nitrous acid (HNO₂) as shown in the equation. 2NaN₃ + 2HNO₂ + 2HCl → 3N₂ + 2NO + 2NaO i) A 500 cm³ volume of the nitrous acid solution was used to 150 g of the sodium azide.	CI + 2H ₂ O destroy completeled dused.
nitrous acid (HNO₂) as shown in the equation. 2NaN₃ + 2HNO₂ + 2HCl → 3N₂ + 2NO + 2NaO i) A 500 cm³ volume of the nitrous acid solution was used to 150 g of the sodium azide. Calculate the concentration, in mol dm⁻³, of the nitrous acid	CI + 2H ₂ O destroy completel d used.
nitrous acid (HNO₂) as shown in the equation. 2NaN₃ + 2HNO₂ + 2HCl → 3N₂ + 2NO + 2NaO i) A 500 cm³ volume of the nitrous acid solution was used to 150 g of the sodium azide. Calculate the concentration, in mol dm⁻³, of the nitrous acid	CI + 2H ₂ O destroy completel d used.
nitrous acid (HNO ₂) as shown in the equation. 2NaN ₃ + 2HNO ₂ + 2HCl \longrightarrow 3N ₂ + 2NO + 2NaO i) A 500 cm ³ volume of the nitrous acid solution was used to 150 g of the sodium azide. Calculate the concentration, in mol dm ⁻³ , of the nitrous acid	CI + 2H ₂ O destroy completel d used.
nitrous acid (HNO ₂) as shown in the equation. 2NaN ₃ + 2HNO ₂ + 2HCl \longrightarrow 3N ₂ + 2NO + 2NaO i) A 500 cm ³ volume of the nitrous acid solution was used to 150 g of the sodium azide. Calculate the concentration, in mol dm ⁻³ , of the nitrous acid	CI + 2H ₂ O destroy completel d used.
nitrous acid (HNO ₂) as shown in the equation. 2NaN ₃ + 2HNO ₂ + 2HCl \longrightarrow 3N ₂ + 2NO + 2NaO i) A 500 cm ³ volume of the nitrous acid solution was used to 150 g of the sodium azide. Calculate the concentration, in mol dm ⁻³ , of the nitrous acid	CI + 2H ₂ O destroy completel d used.
nitrous acid (HNO ₂) as shown in the equation. 2NaN ₃ + 2HNO ₂ + 2HCl \longrightarrow 3N ₂ + 2NO + 2NaO i) A 500 cm ³ volume of the nitrous acid solution was used to 150 g of the sodium azide. Calculate the concentration, in mol dm ⁻³ , of the nitrous acid	CI + 2H ₂ O destroy completel d used.

(d)	Sod	ium azide has a high melting point.					
	Predict the type of bonding in a crystal of sodium azide. Suggest why its melting point is high.						
	Type of bonding						
	Reas	ason for high melting point					
			(2				
			(3				
(e)	The	azide ion has the formula N_3^-					
	(i)	The azide ion can be represented as $N \equiv N - N^-$ One of these bonds is a co-ordinate bond.					
		On the following diagram, draw an arrowhead on one of the bonds to represent the direction of donation of the lone pair in the co-ordinate bond.					
		$N \equiv N - N^{-}$	(1				
	(ii)	Give the formula of a molecule that has the same number of electrons as the azide ion.	(1				
			(1				
	(iii)	Which is the correct formula of magnesium azide?					
		Tick (✓) one box.					
		Mg_3N					
		MgN					

MgN ₆	
Mg_3N_2	

(1) (Total 21 marks)

- **Q3.**Zinc forms many different salts including zinc sulfate, zinc chloride and zinc fluoride.
 - (a) People who have a zinc deficiency can take hydrated zinc sulfate (ZnSO₄.xH₂O) as a dietary supplement.

A student heated 4.38 g of hydrated zinc sulfate and obtained 2.46 g of anhydrous zinc sulfate.

Use these data to calculate the value of the integer <i>x</i> in ZnSO ₄ . <i>x</i> H ₂ O Show your working.						

(3)

(b) Zinc chloride can be prepared in the laboratory by the reaction between zinc oxide and hydrochloric acid.

The equation for the reaction is

$$ZnO + 2HCI \longrightarrow ZnCl_2 + H_2O$$

A 0.0830 mol sample of pure zinc oxide was added to 100 cm _3 of 1.20 mol dm $^{_{-3}}$ hydrochloric acid.

	Zinc chloride can also be prepared in the laboratory by the reaction between zinc and hydrogen chloride gas.	
	$Zn + 2HCI \longrightarrow ZnCI_2 + H_2$	
(An impure sample of zinc powder with a mass of 5.68 g was reacted with hydrogen chloride gas until the reaction was complete. The zinc chloride produced had a mass of 10.7 g.	
	Calculate the percentage purity of the zinc metal. Give your answer to 3 significant figures.	

(d) Predict the type of crystal structure in solid zinc fluoride and explain why its melting point is high.

								(3) (Total 14 marks)
Q4.	-	The table	holow shows	s the beiling n	oints of som	o bydrogon (compounds for	rmod by
		p 6 eleme		s trie boiling p	OITIS OF SOITI	e nydrogen (compounds for	med by
			H₂O	H₂S	H₂Se	H₂Te	1	
Boil	ina n	oint / K	373	212	232	271		
БОП	iiig p	OIIII / IX	373	212	232	271	<u> </u> 	
ı	(a)	State th (H ₂ S).	e strongest t	ype of intermo	olecular force	e in water an	d in hydrogen	sulfide
		Water						
		Hydroge	en sulfide					·•
								(2)
	(b)	Draw a	diagram to sl	how how two	molecules o	f water are a	ttracted to eac	h other by
	(-)	the type	of intermoled		u stated in p		de partial char	
		ione pan	13 Of CICCUOII	3 III your diag	rain.			
								(3)

Explain why the boiling point of water is much higher than the boiling point of

(c)

	hydrogen sulfide.	
		(1)
(d)	Explain why the boiling points increase from H₂S to H₂Te	
		(2)
(e)	When H⁺ ions react with H₂O molecules, H₃O⁺ ions are formed.	
	Name the type of bond formed when H^+ ions react with H_2O molecules. Explain how this type of bond is formed in the H_3O^+ ion.	
	Type of bond	
	Explanation	
		(2)
(f)	Sodium sulfide (Na ₂ S) has a melting point of 1223 K. Predict the type of bonding in sodium sulfide and explain why its melting point is high.	
	Type of bonding	
	Explanation	
	(Total 13 ma	(3) rks)