Q1.	(a) poin	(a) Both HF and HCl are molecules having a polar covalent bond. Their boiling points are 293 K and 188 K respectively.				
	(i)	State which property of the atoms involved causes a bond to be polar.				
	(ii)	Explain, in terms of the intermolecular forces present in each compound, why HF has a higher boiling point than HCl.				
(k	(b) When aluminium chloride reacts with chloride ions, as shown by the equation below, a co-ordinate bond is formed.					
		$AICI_3$ + $CI^- \to AICI_4^-$				
	Expl	ain how this co-ordinate bond is formed.				
(0		w the shape of the PCl₅ molecule and of the PCl₄⁺ ion. State the value(s) of the d angles.				
		PCI ₅ PCI ₄ ⁺				

Bond angle(s)	Bond angle(s)	(4) (Total 10 marks)

Q2.The ester methyl ethanoate is hydrolysed as shown in the following equation.

$$CH_3COOCH_3(I) + H_2O(I)$$
 $CH_3COOH(I) + CH_3OH(I)$ $\Delta H^{\bullet} = +3 \text{ kJ mol}^{-1}$

Which one of the following compounds from the reaction mixture has no hydrogen bonding between its molecules when pure?

- A CH₃COOCH₃(I)
- **B** H₂O(I)
- C CH₃COOH(I)
- D CH₃OH(I)

(Total 1 mark)

Q3.Predict which one of the following has the highest boiling temperature.

- A CH₃COOCH₂CH₃
- B CH₃CH₂CH₂CH₂OH
- C CH₃CH₂CH₂CH₂CH₃
- D CH₃CH₂CH₂CHO

(Total 1 mark)

Q4. The table below shows some values of melting points and some heat energies needed for melting.

Substance		NaCl	HF	HCI	HI
Melting point/K	387	1074	190	158	222
Heat energy for melting /kJ mol-1	7.9	28.9	3.9	2.0	2.9

(a)	Nam	Name three types of intermolecular force.				
	Force	e 1				
	Force	e 2				
	Force	e 3	(3			
4.	<i>(</i> 1)					
(b)	(i)	Describe the bonding in a crystal of iodine.				
	(ii)	Name the crystal type which describes an iodine crystal.				
	(iii)	Explain why heat energy is required to melt an iodine crystal.				
			(4			
(c)	In te	In terms of the intermolecular forces involved, suggest why				
	(i)	hydrogen fluoride requires more heat energy for melting than does hydrogen chloride,				

		(Total 17 m	(2)
(e)	In te	erms of its structure and bonding, suggest why graphite has a very high melting t.	
			(3)
	(ii)	The heat energy needed to vaporise one mole of sodium chloride (171 kJ mol⁻¹) is much greater than the heat energy required to melt one mole of sodium chloride. Explain why this is so.	
(d)	(i)	Explain why the heat energy required to melt sodium chloride is large.	(5)
	(ii)	hydrogen iodide requires more heat energy for melting than does hydrogen chloride.	

Q5. (a) Predict the shapes of the SF₆ molecule and the AlCl₄ ion. Draw diagrams of these species to show their three-dimensional shapes. Name the shapes and suggest values for the bond angles. Explain your reasoning.

(8)

(b) Perfume is a mixture of fragrant compounds dissolved in a volatile solvent.

When applied to the skin the solvent evaporates, causing the skin to cool for a short time. After a while, the fragrance may be detected some distance away. Explain these observations.

(4)

(Total 12 marks)

Q6.This question is about the reaction between propanone and an excess of ethane-1,2-diol, the equation for which is given below.

$$\mathsf{CH_3COCH_3} + \mathsf{HOCH_2CH_2OH} \underset{\mathbf{Y}}{\longleftarrow} (\mathsf{CH_3})_2 \ \mathsf{C} \underset{\mathbf{O} - \mathsf{CH_2}}{\overset{\mathsf{O} - \mathsf{CH_2}}{\vdash}} + \mathsf{H_2O}$$

In a typical procedure, a mixture of 1.00 g of propanone, 5.00 g of ethane-1,2-diol and 0.100 g of benzenesulphonic acid, C₀H₅SO₃H, is heated under reflux in an inert solvent. Benzenesulphonic acid is a strong acid.

Which one of the following statements is **not** true?

- **A** Ethane-1,2-diol and water can form hydrogen bonds.
- **B** Ethane-1,2-diol is soluble in water.
- **C** Propane has a higher boiling point than ethane-1,2-diol.
- **D** Y and water are polar molecules.

(Total 1 mark)