Q1 .⊺		moval of silicon dioxide with limestone in the Blast Furnace can be represented by the wing equation.			
		$CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(I) + CO_2(g)$			
	The volume of carbon dioxide, measured at 298 K and 1.01 × 10 ⁵ Pa, formed in this reaction during the removal of 1.00 tonne (1000 kg) of silicon dioxide is				
	Α	24.5 dm³			
	В	408 dm³			
	С	24.5 m³			
	D	408 m³			
		(Total 1 mark)			
Q2. S	Sodiur	n hydrogencarbonate decomposes on heating as shown by the equation below.			
		$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$			
	The volume of carbon dioxide, measured at 298 K and 101 kPa, obtained by heating 0.0500 mol of sodium hydrogencarbonate is				
	Α	613 cm ³			
	В	1226 cm ³			
	С	613 dm³			
	D	1226 dm³			
		(Total 1 mark)			
Q3.	0.30	Compound A is an oxide of sulphur. At 415 K, a gaseous sample of A , of mass 4 g, occupied a volume of 127 cm³ at a pressure of 103 kPa.			
	State the ideal gas equation and use it to calculate the number of moles of A in the sample, and hence calculate the relative molecular mass of A . (The gas constant $R = 8.31$ J K ⁻¹ mol ⁻¹)				
	Ideal gas equation				
	Calculation				

			/Tatal 5	- wls-a\
			(Total 5 ma	arks)
Q4.			sium nitrate, KNO₃, decomposes on strong heating, forming oxygen and solid Y / products.	
	(a)	A 1. into	00 g sample of KNO ₃ (M_r = 101.1) was heated strongly until fully decomposed Y .	
		(i)	Calculate the number of moles of KNO₃in the 1.00 g sample.	
		(ii)	At 298 K and 100 kPa, the oxygen gas produced in this decomposition occupied a volume of 1.22×10^{-4} m³.	
			State the ideal gas equation and use it to calculate the number of moles of oxygen produced in this decomposition. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
			Ideal gas equation	
			Moles of oxygen	
				(5)

(b) Compound **Y** contains 45.9% of potassium and 16.5% of nitrogen by mass, the remainder being oxygen.

	(i)	State what is meant by the term empirical formula.	
	(ii)	Use the data above to calculate the empirical formula of Y .	
			(4)
(c)	Ded	uce an equation for the decomposition of KNO₃into Y and oxygen.	
		((1) Total 10 marks)
	4:	for the improved to a contraction of both and in contraction in	
n equ	ation	for the incomplete combustion of butane in oxygen is $\frac{1}{2} = \frac{1}{2} = \frac$	
		011 + 4 30 400 + 5110	

Q5.Ar

$$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$$

The volume in $dm^{\scriptscriptstyle 3}$ of oxygen at 295 K and 100 kPa required to burn 0.1 mol of butane to form steam and carbon monoxide only is

- Α 8.6
- В 11
- С 12
- С 16

(Total 1 mark)

Q6.	(a)	Sodium carbonate forms a number of hydrates of general formula Na ₂ CO ₃ .xH ₂ O					
	mad In a	01 g sample of one of these hydrates was dissolved in water and the solution le up to 250 cm³. titration, a 25.0 cm³ portion of this solution required 24.3 cm³ of 0.200 mol⁻¹ dm⁻³ rochloric acid for complete reaction.					
	The	equation for this reaction is shown below.					
	Na₂0	$CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$					
	(i)	Calculate the number of moles of HCl in 24.3 cm³ of 0.200 mol dm⁻³ hydrochloric acid.					
	(ii)	Deduce the number of moles of Na ₂ CO ₃ in 25.0 cm ³ of the Na ₂ CO ₃ solution.					
	(iii)	Hence deduce the number of moles of Na ₂ CO ₃ in the original 250 cm ³ of solution.					
	(iv)	Calculate the M_r of the hydrated sodium carbonate.					
			(5)				
(b)	In an experiment, the M_r of a different hydrated sodium carbonate was found to be 250. Use this value to calculate the number of molecules of water of crystallisation, x , in this hydrated sodium carbonate, Na ₂ CO ₃ . x H ₂ O						

			(
(c)	A ga	as cylinder, of volume 5.00 × 10⁻³ m³, contains 325 g of argon gas.	
	(i)	Give the ideal gas equation.	
	(ii)	Use the ideal gas equation to calculate the pressure of the argon gas in the cylinder at a temperature of 298 K. (The gas constant $R = 8.31$ J K ⁻¹ mol ⁻¹)	
		(Total 12 m	ari
		(Total 12 III	aii
	(a) lead	Lead(II) nitrate may be produced by the reaction between nitric acid and I(II) oxide as shown by the equation below.	
	PbC	$O + 2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O$	
	acid	excess of lead(II) oxide was allowed to react with 175 cm³ of 1.50 mol dm³ nitric l. Calculate the maximum mass of lead(II) nitrate which could be obtained from reaction.	

(b)	An equation representing the thermal decomposition of lead(II) nitrate is shown below.			
	2Pb($NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$		
	A sample of lead(II) nitrate was heated until the decomposition was complete. At a temperature of 500 K and a pressure of 100 kPa, the total volume of the gaseous mixture produced was found to be 1.50×10^{-4} m ³ .			
	(i)	State the ideal gas equation and use it to calculate the total number of moles of gas produced in this decomposition. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)		
		Ideal gas equation		
		Total number of moles of gas		
	(ii)	Deduce the number of moles, and the mass, of NO_2 present in this gaseous mixture. (If you have been unable to calculate the total number of moles of gas in part (b)(i), you should assume this to be 2.23×10^{-3} mol. This is not the correct answer.)		
		Number of moles of NO ₂		
		Mass of NO ₂		
		(7) (Total 11 marks)		

Q8. Ammonium sulphate reacts with aqueous sodium hydroxide as shown by the (a)

(i)

$$(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$$

A sample of ammonium sulphate was heated with 100 cm³ of 0.500 mol dm³ aqueous sodium hydroxide. To ensure that all the ammonium sulphate reacted, an excess of sodium hydroxide was used.

Calculate the original number of moles of NaOH in 100 cm³ of 0.500 mol dm⁻³

Heating was continued until all of the ammonia had been driven off as a gas. The unreacted sodium hydroxide remaining in the solution required 27.3 cm³ of 0.600 mol dm⁻³ hydrochloric acid for neutralisation.

	aqueous sodium hydroxide.
(ii)	Calculate the number of moles of HCl in 27.3 cm³ of 0.600 mol dm⁻³ hydrochloric acid.
(iii)	Deduce the number of moles of the unreacted NaOH neutralised by the hydrochloric acid.
	Trydroomono dold.
(iv)	Use your answers from parts (a) (i) and (a) (iii) to calculate the number of
	moles of NaOH which reacted with the ammonium sulphate.
(v)	Use your answer in part (a) (iv) to calculate the number of moles and the
` /	mass of ammonium sulphate in the sample. (If you have been unable to obtain an answer to part (a) (iv), you may assume

	that the number of moles of NaOH which reacted with ammonium sulphate equals 2.78×10^{-2} mol. This is not the correct answer.)	
	Moles of ammonium sulphate	
	Mass of ammonium sulphate	
		(7)
/b)	A 0.142g georgia comple of ammonic acquiried a valume of 2.96 v 104 m³ at a	
(b)	A 0.143g gaseous sample of ammonia occupied a volume of 2.86 × 10 ⁻⁴ m³ at a temperature <i>T</i> and a pressure of 100 kPa.	
	State the ideal gas equation, calculate the number of moles of ammonia present and deduce the value of the temperature $\it T$.	
	(The gas constant <i>R</i> = 8.31 J K⁻¹ mol⁻¹)	
	Ideal gas equation	
	Moles of ammonia	
	Value of T	
	(Total 11 ma	(4) irks)