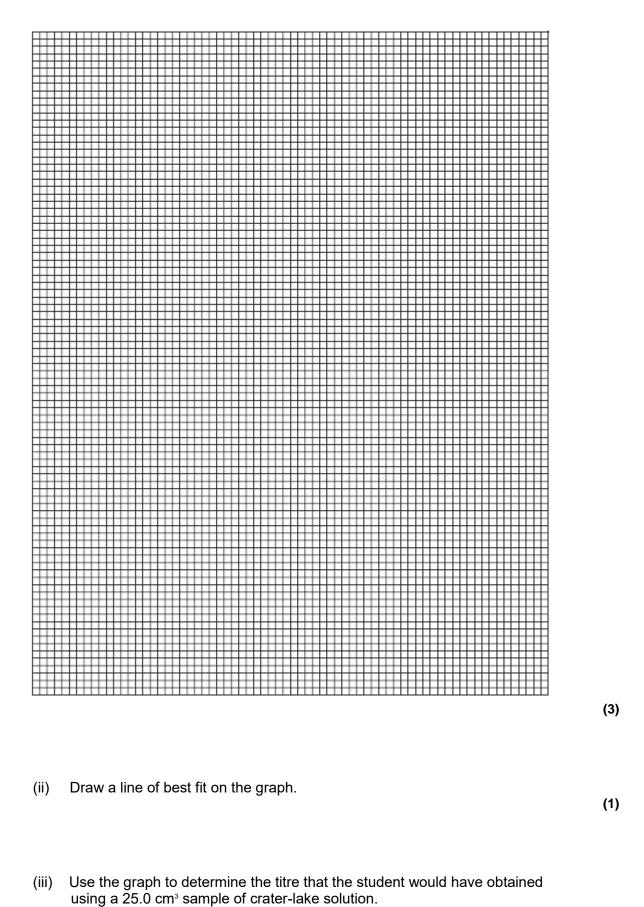
Q1.		_	essaltpeter was the first nitrogen fertiliser to be manufactured in Norway. It has a $Ca(NO_3)_2$	
	(a)		gessaltpeter can be made by the reaction of calcium carbonate with dilute nitric as shown by the following equation.	
		С	$CaCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(I)$	
			n experiment, an excess of powdered calcium carbonate was added to 36.2 cm³ 586 mol dm³ nitric acid.	
		(i)	Calculate the amount, in moles, of HNO₃ in 36.2 cm³ of 0.586 mol dm⁻₃ nitric acid. Give your answer to 3 significant figures.	
				(1)
		(ii)	Calculate the amount, in moles, of CaCO₃ that reacted with the nitric acid. Give your answer to 3 significant figures.	
				(1)
		(iii)	Calculate the minimum mass of powdered CaCO ₃ that should be added to react with all of the nitric acid.	
			Give your answer to 3 significant figures.	
				(0)
				(2)
		(iv)	State the type of reaction that occurs when calcium carbonate reacts with nitric acid.	
				(1)

		$2Ca(NO_3)_2(s) \longrightarrow 2CaO(s) + 4NO_2(g) + O_2(g)$	
	A sa	mple of Norgessaltpeter was decomposed completely.	
	and	gases produced occupied a volume of 3.50×10^{-3} m³ at a pressure of 100 kPa a temperature of 31 °C. gas constant $R = 8.31$ J K⁻¹ mol⁻¹)	
	(i)	Calculate the total amount, in moles, of gases produced.	
			(3)
	(ii)	Hence calculate the amount, in moles, of oxygen produced.	
			(1)
			(.,
(c)	is ar A 6.0 Use	rated calcium nitrate can be represented by the formula $Ca(NO_3)_2.xH_2O$ where x in integer. 04 g sample of $Ca(NO_3)_2.xH_2O$ contains 1.84 g of water of crystallisation. this information to calculate a value for x . w your working.	
		(Total 12 ma	(3) arks)


Norgessaltpeter decomposes on heating as shown by the following equation.

(b)

Q2.(a) A student investigated the acid content of a different crater-lake solution. The student used a 50.0 cm³ burette to measure out different volumes of this crater-lake solution. Each volume of crater-lake solution was titrated with a 0.100 mol dm⁻³ sodium hydroxide solution. Each titration was repeated. The results are shown below.

Volume of crater- cm ³	lake solution /	10.0	20.0	30.0	40.0	50.0
Volume of sodium	Experiment 1	5.85	17.00	20.00	26.50	32.45
hydroxide solution / cm³	Experiment 2	6.15	13.00	19.90	26.50	32.55
Average titre / cm	6.00	15.00	19.95	26.50	32.50	

(i) On the graph paper below, plot a graph of average titre (*y*-axis) against volume of crater-lake solution. Both axes must start at zero.

Page 5

(1)

	(iv)	Excluding any anomalous points, which average titre value would you expect to be the least accurate value? Give one reason for your choice.	
		Least accurate average titre	
		Reason	
			(2)
(b)	pow equa	ther 100 cm³ sample of crater-lake solution was reacted with an excess of dered limestone. The gas produced was collected in a gas syringe. The ation for the reaction between the sulfuric(IV) acid in the crater-lake solution and calcium carbonate in the powdered limestone is shown below. H₂SO₃ + CaCO₃ → CaSO₃ + H₂O + CO₂	
	crate	volume of gas collected from the reaction of the sulfuric(IV) acid in 100 cm³ of er-lake solution with an excess of powdered limestone was 81.0 cm³ at 298 K 1.00 × 10⁵ Pa.	
	(i)	State the ideal gas equation.	
			(1)
	(ii)	Use the ideal gas equation to calculate the amount, in moles, of carbon dioxide formed. Show your working. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
			(3)
	(iii)	Use the equation for the reaction and your answer from part (b)(ii) to calculate the minimum mass of calcium carbonate needed to neutralise the sulfuric(IV) acid in 1.00 dm³ of crater-lake solution. Show your working.	

(If you could not complete the calculation in part (b)(ii) assume that the amount

		of carbon dioxide is 1.25 × 10 ⁻² mol. This is not the correct value.)	
			(2)
			(3)
	(iv)	The percentage by mass of calcium carbonate in the powdered limestone was	
		95.0%. Calculate the minimum mass of this powdered limestone needed to neutralise the sulfuric(IV) acid in 1.00 dm³ of this crater-lake solution.	
			(0)
			(2)
	(v)	Give one reason, other than cost, why limestone rather than solid sodium hydroxide is often used to neutralise acidity in lakes.	
			(1)
		(Total 17 m	arks)
Q3.	(a) follo	An unknown metal carbonate reacts with hydrochloric acid according to the wing equation.	
		$M_2CO_3(aq) + 2HCI(aq) \rightarrow 2MCI(aq) + CO_2(g) + H_2O(I)$	
	solut	44 g sample of M ₂ CO ₃ was dissolved in distilled water to make 250 cm ³ of tion. A 25.0 cm ³ portion of this solution required 33.2 cm ³ of 0.150 mol dm ⁻³ ochloric acid for complete reaction.	
	(i)	Calculate the amount, in moles, of HCl in 33.2 cm³ of 0.150 mol dm⁻³ hydrochloric acid. Give your answer to 3 significant figures.	
			445
			(1)

(ii)	Calculate the amount, in moles, of M ₂ CO ₃ that reacted with this amount of HCl. Give your answer to 3 significant figures.	
		(1)
(iii)	Calculate the amount, in moles, of M₂CO₃ in the 3.44 g sample. Give your answer to 3 significant figures.	
		(1)
(iv)	Calculate the relative formula mass, M_r , of M_2CO_3 Give your answer to 1 decimal place.	
		(1)
(v)	Hence determine the relative atomic mass, $A_{\rm r}$, of the metal M and deduce its identity.	
	<i>A</i> , of M	
	Identity of M	(2)
volu Calc	nother experiment, 0.658 mol of CO_2 was produced. This gas occupied a me of 0.0220 m³ at a pressure of 100 kPa. culate the temperature of this CO_2 and state the units. e gas constant $R = 8.31$ J K⁻¹ mol⁻¹)	

(b)

	gest one possible danger when a metal carbonate is reacted with an acid in a ed flask.
	different experiment, 6.27 g of magnesium carbonate were added to an excess ilfuric acid. The following reaction occurred.
	Ilfuric acid. The following reaction occurred.
of su	Ifuric acid. The following reaction occurred. $ MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + CO_2 + H_2O $
of su	Ifuric acid. The following reaction occurred. $ MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + CO_2 + H_2O $
of su	Iffuric acid. The following reaction occurred. $ MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + CO_2 + H_2O $ Calculate the amount, in moles, of $MgCO_3$ in 6.27 g of magnesium carbonate.
of su	Ilfuric acid. The following reaction occurred. MgCO₃ + H₂SO₄ → MgSO₄ + CO₂ + H₂O Calculate the amount, in moles, of MgCO₃ in 6.27 g of magnesium carbonate.
of su	Iffuric acid. The following reaction occurred. $ MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + CO_2 + H_2O $ Calculate the amount, in moles, of $MgCO_3$ in 6.27 g of magnesium carbonate.
of su	Ilfuric acid. The following reaction occurred. MgCO₃ + H₂SO₄ → MgSO₄ + CO₂ + H₂O Calculate the amount, in moles, of MgCO₃ in 6.27 g of magnesium carbonate.
of su	Ilfuric acid. The following reaction occurred. MgCO₃ + H₂SO₄ → MgSO₄ + CO₂ + H₂O Calculate the amount, in moles, of MgCO₃ in 6.27 g of magnesium carbonate.
of su	Ilfuric acid. The following reaction occurred. MgCO₃ + H₂SO₄ → MgSO₄ + CO₂ + H₂O Calculate the amount, in moles, of MgCO₃ in 6.27 g of magnesium carbonate.

Q4. In this question give all your answers to three significant figures.

Magnesium nitrate decomposes on heating to form magnesium oxide, nitrogen dioxide and oxygen as shown in the following equation.

$$2Mg(NO_{\scriptscriptstyle 3})_{\scriptscriptstyle 2}(s) \rightarrow 2MgO(s) + 4NO_{\scriptscriptstyle 2}(g) + O_{\scriptscriptstyle 2}(g)$$

(a)	Thermal decomposition of a sample of magnesium nitrate produced 0.741 g of magnesium oxide.					
	(i)	Calculate the amount, in moles, of MgO in 0.741 g of magnesium oxide.				
			(2)			
	(ii)	Calculate the total amount, in moles, of gas produced from this sample of magnesium nitrate.				
			(1)			
(b)	prod at 33	nother experiment, a different sample of magnesium nitrate decomposed to uce 0.402 mol of gas. Calculate the volume, in dm³, that this gas would occupy 83 K and $1.00 \times 10^{\circ} \text{ Pa}$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)				
			(3)			
(c)		0152 mol sample of magnesium oxide, produced from the decomposition of nesium nitrate, was reacted with hydrochloric acid.				
		$MgO + 2HCI \rightarrow MgCI_2 + H_2O$				
	(i)	Calculate the amount, in moles, of HCl needed to react completely with the 0.0152 mol sample of magnesium oxide.				
			(1)			

(ii)	This 0.0152 mol sample of magnesium oxide required 32.4 cm ³ of hy acid for complete reaction. Use this information and your answer to p to calculate the concentration, in mol dm ⁻³ , of the hydrochloric acid.	
		(1)
		(Total 8 marks)