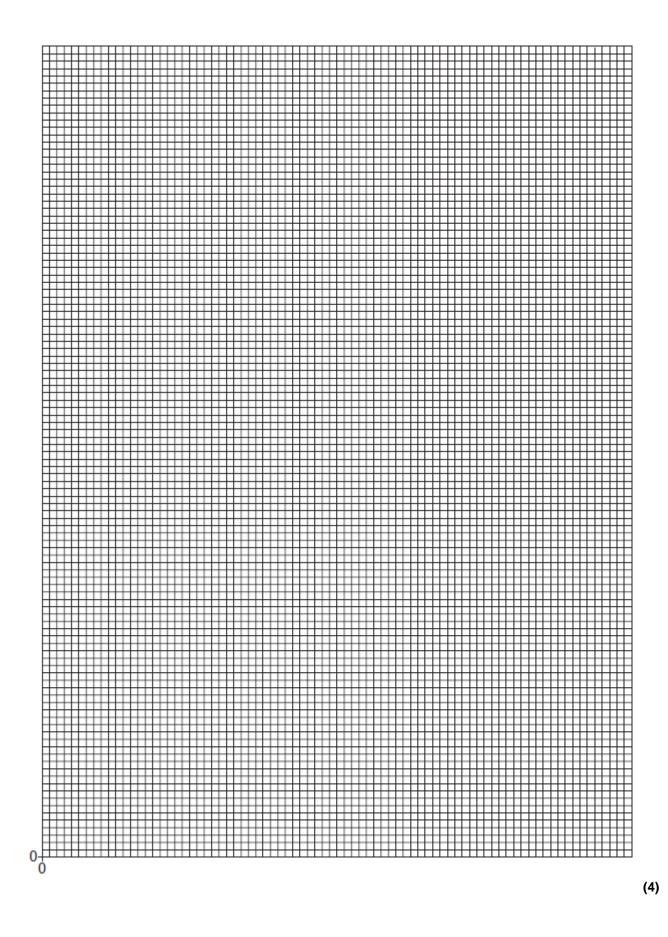
(a)	People who have a zinc deficiency can take hydrated zinc sulfate (ZnSO $_4$. xH_2O) as a dietary supplement.	
	A student heated 4.38 g of hydrated zinc sulfate and obtained 2.46 g of anhydrous zinc sulfate.	
	Use these data to calculate the value of the integer x in ZnSO ₄ . x H ₂ O Show your working.	
		(3)
(b)	Zinc chloride can be prepared in the laboratory by the reaction between zinc oxide and hydrochloric acid. The equation for the reaction is	
	$ZnO + 2HCI \longrightarrow ZnCI_2 + H_2O$	
	A 0.0830 mol sample of pure zinc oxide was added to 100 cm³ of 1.20 mol dm⁻³ hydrochloric acid.	
	Calculate the maximum mass of anhydrous zinc chloride that could be obtained from the products of this reaction.	

Q1.Zinc forms many different salts including zinc sulfate, zinc chloride and zinc fluoride.

	Zinc chloride can also be prepared in the laboratory by the reaction between and hydrogen chloride gas.	zinc
	$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$	
C	An impure sample of zinc powder with a mass of 5.68 g was reacted with hydehloride gas until the reaction was complete. The zinc chloride produced had mass of 10.7 g.	•
	Calculate the percentage purity of the zinc metal. Give your answer to 3 significant figures.	
	Predict the type of crystal structure in solid zinc fluoride and explain why its rooint is high.	nelting
•		

Q2.There is an experimental method for determining the number of water molecules in the formula of hydrated sodium carbonate. This method involves heating a sample to a temperature higher than 300 °C and recording the change in mass of the sample. The equation for the reaction taking place is


$$Na_2CO_3.10H_2O(s) \longrightarrow Na_2CO_3(s) + 10H_2O(g)$$

A group of six students carried out this experiment. They each weighed out a sample of hydrated sodium carbonate. They then heated their sample to a temperature higher than 300 °C in a crucible for ten minutes and recorded the final mass after the crucible had cooled. Their results are summarised in the table.

Student	1	2	3	4	5	6
Initial mass / g	2.43	1.65	3.58	1.09	2.82	1.95
Final mass / g	0.90	0.61	1.53	0.40	1.15	0.72

(a) Plot the values of **Initial mass** (*y*-axis) against **Final mass** on the grid below.

A graph of these results should include an additional point. Draw a circle on the grid around the additional point that you should include.

(b) Draw a best-fit straight line for these results that includes your additional point.

(c)	Identify each student whose experiment gave an anomalous result.	
		(1)
(d)	All the students carried out the experiment exactly according to this method. Explain why a student that you identified in part (c) obtained an anomalous result.	
	(Total 8 r	(2) narks)
(NO	gment 'Cobalt Yellow' contains an octahedral complex of cobalt(III) and nitrate(III) ions ₂ -). Analysis shows that Cobalt Yellow contains 13.0% of cobalt, 18.6% of nitrogen and	
25.9 (a)	0% of potassium by mass. The remainder is oxygen. Use these data to calculate the empirical formula of Cobalt Yellow. Show your working.	
		(3)

o) Ded	duce the s	structural f	ormula of	the cobal	t-containi	ng ion in (Cobalt Ye	llow.
								(Total
followin uorine.	g table sh	nows the e	electroneg	jativity vali	ues of the	elements	s from lithi	ium to
		Li	Ве	В	С	N	0	F
Electron	egativity	1.0	1.5	2.0	2.5	3.0	3.5	4.0
\;;;\		space)						
(ii)	fluorine							
	(Extra s	space)						

(b) State the type of bonding in lithium fluoride. Explain why a lot of energy is needed to melt a sample of solid lithium fluoride.

 (ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working. 	Bon	ding
Deduce why the bonding in nitrogen oxide is covalent rather than ionic. (Extra space) Oxygen forms several different compounds with fluorine. (ii) Suggest the type of crystal shown by OF ₂ Write an equation to show how OF ₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.	Expl	anation
Deduce why the bonding in nitrogen oxide is covalent rather than ionic. (Extra space) Oxygen forms several different compounds with fluorine. (ii) Suggest the type of crystal shown by OF ₂ Write an equation to show how OF ₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
Deduce why the bonding in nitrogen oxide is covalent rather than ionic. (Extra space)		
Deduce why the bonding in nitrogen oxide is covalent rather than ionic. (Extra space)	(Ext	ra space)
(ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
(ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
(ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.	Dod	use why the handing in nitragen evide is covalent rather than ionic
(ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.	Deu	
(iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. (Extra space)		
Oxygen forms several different compounds with fluorine. (i) Suggest the type of crystal shown by OF₂ (iii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.	/Evt	
Oxygen forms several different compounds with fluorine. (i) Suggest the type of crystal shown by OF ₂	(LXI	
(ii) Suggest the type of crystal shown by OF ₂ (iii) Write an equation to show how OF ₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
(ii) Suggest the type of crystal shown by OF ₂ (iii) Write an equation to show how OF ₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
(ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.	Оху	gen forms several different compounds with fluorine.
 (ii) Write an equation to show how OF₂ reacts with steam to form oxygen and hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working. 	(i)	Suggest the type of crystal shown by OF ₂
hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
hydrogen fluoride. (iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
(iii) One of these compounds of oxygen and fluorine has a relative molecular mas of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.	(ii)	
of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		·· y ··· - g - · · · · · · · · · · ·
of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
of 70.0 and contains 54.3% by mass of fluorine. Calculate the empirical formula and the molecular formula of this compound. Show your working.		
Show your working.	(iii)	One of these compounds of oxygen and fluorine has a relative molecular mass of 70.0 and contains 54.3% by mass of fluorine.
Empirical formula		
Empirical formula		Empirical formula

Molecular formula	
	(4)
-	(4)
(Tota	al 14 marks)
·	,