
(a)	Calculate the value of the integer x . Show your working.	
		(4
(b)	Suggest how a student doing this experiment could check that all the water been removed.	had
		•
		(2 (Total 6 marks
		(Total 6 marks
decı	boric acid (H₃BO₃) is applied as a coating on wood, it acts as a fire retardant l	(Total 6 marks

Time of heating / minutes	Mass of crucible and contents / g
0	35.85
5	35.10
10	34.41
15	34.00
20	33.70
25	33.56
30	33.50
35	33.50

Plot a graph of the results from the table above to show the mass of the crucible and boric acid (*y*-axis) against time of heating on the grid.

(Total 4 marks)

Q3. (a)		osphate reacts with aqueous nitric acid to produce phosphoric acid and calcium shown in the equation.	
		$Ca_3(PO_4)_2 + 6HNO_3 \longrightarrow 2H_3PO_4 + 3Ca(NO_3)_2$	
	(i)	A 7.26 g sample of calcium phosphate reacted completely when added to an excess of aqueous nitric acid to form 38.0 cm ³ of solution.	
		Calculate the concentration, in mol dm ⁻³ , of phosphoric acid in this solution. Give your answer to 3 significant figures.	
			(5)
	(ii)	Calculate the percentage atom economy for the formation of calcium nitrate in this reaction. Give your answer to 1 decimal place.	
			(2)
			. ,

(b) Write an equation to show the reaction between calcium hydroxide and phosphoric

		acid to produce calcium phosphate and water.	
			(1)
	(c)	Calcium dihydrogenphosphate can be represented by the formula $Ca(H_2PO_4)$, where x is an integer. A 9.76 g sample of calcium dihydrogenphosphate contains 0.17 g of hydrogen, 2.59 g of phosphorus and 5.33 g of oxygen.	
		Calculate the empirical formula and hence the value of \boldsymbol{x} . Show your working.	
		(Total 12 r	(4) narks)
Q4. ls		ane (C_8H_{18}) is the common name for the branched-chain hydrocarbon that burns othly in car engines. The skeletal formula of isooctane is shown below.	
	(a)	Give the IUPAC name for isooctane.	
	(a)	GIVE THE TOT ACTIGITIES ISSUED IN THE TOTAL ACTION ASSOCIATION.	(1)

(b)	Deduce the number of peaks in the ¹³ C NMR spectrum of isooctane.	
	5	
	6	
	7 🔍	
	8	/4'
		(1)
(c)	Isooctane can be formed, together with propene and ethene, in a reaction in which one molecule of an alkane that contains 20 carbon atoms is cracked.	
	Using molecular formulas, write an equation for this reaction.	
		(1)
(d)	How do the products of the reaction in part (c) show that the reaction is an example of thermal cracking?	
		(1)
(e)	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers. Number of monochloro isomers	
	Structure	

(f)	An isomer of isooctane reacts with chlorine to form only one monochloro compound.
	Draw the skeletal formula of this monochloro compound.
(g)	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes 35 Cl and 37 Cl in the ratio 1.5 : 1.0 Calculate the M_r of this monochlorooctane.
	$M_{r} = \dots$
(h)	Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds.
	One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass. Calculate the molecular formula of this compound.
	Molecular formula =

Page 8

(1)

(2)

Q5. G	Q5. Glucose can decompose in the presence of microorganisms to form a range of products. One of these is a carboxylic acid (M_r = 88.0) containing 40.9% carbon and 4.5% hydrogen by mass.			
	(a)	Deduce the empirical and molecular formulas of the carboxylic acid formed.		
		Empirical formula = Molecular formula =	(4)	
	(b)	Ethanol is formed by the fermentation of glucose. A student carried out this fermentation reaction in a beaker using an aqueous solution of glucose at a temperature of 25 °C in the presence of yeast. Write an equation for the reaction occurring during fermentation.		
			(1)	
	(c)	In industry, this fermentation reaction is carried out at 35 °C rather than 25 °C.		
		Suggest one advantage and one disadvantage for industry of carrying out the fermentation at this higher temperature.		
		Advantage		
		Disadvantage		
			(2)	

The method used by the student in part (b) would result in the ethanol being

(d)

acid.	
on occur?	
	(1)
eir fingerprint regions.	
	(2) (s)
v 6 5	veen the infrared spectrum of a carboxylic acid and that of eir fingerprint regions. Sheet.