- **Q1.**Which one of the following compounds contains the smallest percentage, by mass, of oxygen?
 - A CH₃OCH₂CH₃
 - B CH₃OCH₂NH₂
 - c cos
 - D $C_4H_9AI(OH)_2$

(Total 1 mark)

Q2.The percentage of copper in a copper(II) salt can be determined by using a thiosulphate titration. 0.305 g of a copper(II) salt was dissolved in water and added to an excess of potassium iodide solution, liberating iodine according to the following equation:

$$2Cu^{2+}(aq) + 4l^{-}(aq) \rightarrow 2Cul(s) + l_2(aq)$$

The iodine liberated required 24.5 cm³ of a 0.100 mol dm⁻³ solution of sodium thiosulphate:

$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

The percentage of copper, by mass, in the copper(II) salt is

- **A** 64.2
- **B** 51.0
- **C** 48.4
- **D** 25.5

(Total 1 mark)

Q3. The chloride of an element **Z** reacts with water according to the following equation.

$$ZCI_4(I) + 2H_2O(I) \rightarrow ZO_2(s) + 4HCI(aq)$$

A 1.304 g sample of ZCl₄ was added to water. The solid ZO₂ was removed by filtration and the resulting solution was made up to 250 cm³ in a volumetric flask. A 25.0 cm³ portion of this solution was titrated against a 0.112 mol dm⁻³ solution of sodium hydroxide, of which 21.7 cm³ were required to reach the end point.

Use this information to calculate the number of moles of HCl produced and hence the number of moles of ZCl₄ present in the sample. Calculate the relative molecular mass, M_{c} , of ZCl₄.

(Total 9 marks)

Q4.1,3-dinitrobenzene can be prepared by heating nitrobenzene with a mixture of fuming nitric acid and concentrated sulphuric acid. The reaction can be represented by the following equation.

If the yield of the reaction is 55%, the mass of 1,3-dinitrobenzene produced from 12.30 g of nitrobenzene is

- **A** 16.90 g
- **B** 16.80 g
- **C** 9.30 g
- **D** 9.24 g

(Total 1 mark)

- **Q5.**On heating, magnesium reacts vigorously with element **X** to produce compound **Y**. An aqueous solution of **Y**, when treated with aqueous silver nitrate, gives a white precipitate that is readily soluble in dilute aqueous ammonia. What is the minimum mass of **X** that is needed to react completely with 4.05 g of magnesium?
 - **A** 11.83 g
 - **B** 5.92 g
 - **C** 5.33 g
 - **D** 2.67 g

(Total 1 mark)

Q6.	(a)	Sodium carbonate forms a number of hydrates of general formula Na ₂ CO ₃ .xH ₂ O						
	A 3.01 g sample of one of these hydrates was dissolved in water and the solution made up to 250 cm³. In a titration, a 25.0 cm³ portion of this solution required 24.3 cm³ of 0.200 mol⁻¹ dm⁻³ hydrochloric acid for complete reaction.							
	Na₂C	$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$						
	(i)	Calculate the number of moles of HCl in 24.3 cm³ of 0.200 mol dm³ hydrochloric acid.						
	(ii)	Deduce the number of moles of Na ₂ CO ₃ in 25.0 cm ³ of the Na ₂ CO ₃ solution.						
	(iii)	Hence deduce the number of moles of Na ₂ CO ₃ in the original 250 cm ³ of solution.						
	(iv)	Calculate the M_r of the hydrated sodium carbonate.						
			(5)					
(b)	250. Use	n experiment, the M_r of a different hydrated sodium carbonate was found to be this value to calculate the number of molecules of water of crystallisation, x , in hydrated sodium carbonate, Na ₂ CO ₃ . x H ₂ O						

			(3)	
(c) A ga	A gas cylinder, of volume 5.00 × 10 ⁻³ m³, contains 325 g of argon gas.		
	(i)	Give the ideal gas equation.		
	(ii)	Use the ideal gas equation to calculate the pressure of the argon gas in t cylinder at a temperature of 298 K. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	he	
		(e gae conceant).		
		(Tota	(4) al 12 marks)	
Q7.	(a) hydr	Calculate the concentration, in mol dm³, of the solution formed when 19.6 rogen chloride, HCl, are dissolved in water and the volume made up to 250		
	•••••			
	•••••			
			(3)	

(b) The carbonate of metal $\bf M$ has the formula M_2CO_3 . The equation for the reaction of this carbonate with hydrochloric acid is given below.

 M_2CO_3 + 2HCl \rightarrow 2MCl + CO_2 + H_2O

Q8.Butan-1-ol was converted into butyl propanoate by reaction with an excess of propanoic acid. In the reaction, 6.0 g of the alcohol gave 7.4 g of the ester. The percentage yield of ester was

Identity of **M**

(Total 9 marks)

	В	70	
	С	75	
	D	81	(Total 1 mark)
Q9.		` '	The equation for the reaction between magnesium carbonate and hydrochloric given below.
			$MgCO_3$ + $2HCI \rightarrow MgCI_2$ + H_2O + CO_2
		MgCC	75.0 cm³ of 0.500 mol dm¬³ hydrochloric acid were added to 1.25 g of impure 0₃ some acid was left unreacted. This unreacted acid required 21.6 cm³ of a mol dm¬³ solution of sodium hydroxide for complete reaction.
		(i)	Calculate the number of moles of HCl in 75.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid.
		(ii)	Calculate the number of moles of NaOH used to neutralise the unreacted HCl.
		(iii)	Show that the number of moles of HCl which reacted with the MgCO $_{\!\scriptscriptstyle 3}$ in the sample was 0.0267
		(iv)	Calculate the number of moles and the mass of MgCO ₃ in the sample, and hence deduce the percentage by mass of MgCO ₃ in the sample.
			Moles of MgCO ₃
			Mass of MgCO ₃
			Page 7

om.

57

		Percentage of MgCO ₃	
			(8)
(b)		ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen.	
	(i)	Use this information to show that the empirical formula of the compound is Na_2SO_3	
	/::\	When No CO is treated with an every of hydrochleric acid, any source adivus	
	(ii)	When Na ₂ SO ₃ is treated with an excess of hydrochloric acid, aqueous sodium chloride is formed and sulphur dioxide gas is evolved. Write an equation to represent this reaction.	
		(Total 12 ma	(4) arks)