(e)	Suggest one way in which the reliability of this analysis could be improved.	(
(d)	How would you ensure the reliability of the result obtained in this experiment?	
		(
(c)	Assuming that carbon is the only impurity, calculate the percentage by mass of carbon in the 1.27g sample.	
		(
(b)	Write an equation for the reaction of iron(II) ions with manganate(VII) ions in acid solution.	
(a)	Write an equation for the reaction between iron and dilute sulphuric acid.	
sulp hydr of th	ne stage a 1.27g sample of this impure iron was reacted with an excess of dilute huric acid. All of the iron in the sample was converted into iron(II) sulfate, and ogen was evolved. The solution formed was made up to 250 cm³. A 25.0 cm³ sample is solution reacted completely with exactly 19.6 cm³ of a 0.0220 mol dm⁻¹ solution of ssium manganate(VII).	
and	non from the blast Furnace contains carbon. In the steel-making process, oxygen is in through molten impure iron. At stages during this process samples of iron are taken analysed to determine the remaining carbon content. One method of analysis lives a redox titration.	

	(1) (Total 9 marks)

Q2. (a) Complete the following table.

	Relative mass	Relative charge
Neutron		
Electron		

(2)

(4)

(b) An atom has twice as many protons as, and four more neutrons than, an atom of ⁹Be. Deduce the symbol, including the mass number, of this atom.

(2)

(c) Draw the shape of a molecule of BeCl₂ and the shape of a molecule of Cl₂O. Show any lone pairs of electrons on the central atom. Name the shape of each molecule.

BeCl₂ Cl₂O

Name of shape Name of shape

(d) The equation for the reaction between magnesium hydroxide and hydrochloric acid is shown below.

$$Mg(OH)_2(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + 2H_2O(I)$$

Calculate the volume, in cm³, of 1.00 mol dm³ hydrochloric acid required to react completely with 1.00 g of magnesium hydroxide.

Q3.Ethanoyl chloride reacts with methylbenzene forming compound **X** according to the equation below.

If the experimental yield is 40.0%, the mass in grams of **X** (M_r = 134.0) formed from 18.4 g of methylbenzene (M_r = 92.0) is

- **A** 26.8
- **B** 16.1
- **C** 10.7
- **D** 7.4

(Total 1 mark)

Q4.The removal of silicon dioxide with limestone in the Blast Furnace can be represented by the following equation.

$$CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(I) + CO_2(g)$$

The volume of carbon dioxide, measured at 298 K and 1.01 × 10⁵ Pa, formed in this

	react	ion du	ring the removal of 1.00 tonne (1000 kg) of silicon dioxide is			
	Α	24.5	dm³			
	В	408 d	lm³			
	С	24.5 ו	m^3			
	D	408 n		٠,		
			(Total 1 mark	()		
Q5. T			of silicon dioxide with limestone in the Blast Furnace can be represented by the quation.			
			$CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(I) + CO_2(g)$			
		minimu n dioxi	im mass of calcium carbonate needed to remove 1.00 tonne (1000 kg) of de is			
	Α	0.46 1	conne			
	В	0.60 1	conne			
	С	1.67 1	conne			
	D	2.181	onne (Total 1 mark	۲۱		
			(Total I mair	',		
Q6.	an ex gas a	cess on the contract of the co	3 g sample of impure iron, containing an unreactive impurity, was reacted with of hydrochloric acid. All of the iron in the sample reacted, evolving hydrogen ming a solution of iron(II) chloride. The volume of hydrogen evolved was 102 red at 298 K and 110 kPa.			
	The percentage, by mass, of iron in the sample can be determined using either the volume of hydrogen produced or by titrating the solution of iron(II) chloride formed against a standard solution of potassium dichromate(VI).					
	(a)	(i)	Write an equation for the reaction between iron and hydrochloric acid.			
		(ii)	Calculate the number of moles of hydrogen produced in the reaction.			
			Page 5			

	(iii)	Use your answers to parts (a)(i) and (ii) to determine the number of moles of iron and the mass of iron in the original sample. (If you have been unable to complete part (a)(ii) you should assume the answer to be 4.25×10^{-3} mol. This is not the correct answer.)	
		Moles of iron	
		Mass of iron	
	(iv)	Calculate the percentage of iron in the original sample.	
			(7)
(b)	(i)	Write half-equations for the oxidation of Fe $^{2+}$ and for the reduction of $\text{Cr}_2\text{O}^{\frac{2}{7}}$ in acidic solution, and use these to construct an overall equation for the reaction between these two ions.	
		Half-equation for the oxidation of Fe ²⁺	
		Half-equation for the reduction of $Cr_2O^{\frac{2}{7}}$	
		Overall equation	

(ii) The number of moles of iron in the sample was determined in part (a)(iii). Use this answer to calculate the volume of a 0.0200 mol dm⁻³ solution of potassium dichromate(VI) which would react exactly with the solution of iron(II) chloride

			(If you have been unable to complete part (a)(iii) you should assume the answer to be 3.63×10^{-3} mol. This is not the correct answer.)
		(iii)	Explain why an incorrect value for the number of moles of iron(II) chloride formed would have been obtained if the original solution had been titrated with
			potassium manganate(VII).
			(7otal 14 marks
Q7.	form belo	ı a larç	llycerine, C ₃ H ₅ N ₃ O ₉ , is an explosive which, on detonation, decomposes rapidly to ge number of gaseous molecules. The equation for this decomposition is given
			$4C_3H_5N_3O_9(I) \rightarrow 12CO_2(g) + 10H_2O(g) + 6N_2(g) + O_2(g)$
	(a)	A sa	ample of nitroglycerine was detonated and produced 0.350 g of oxygen gas.
		(i)	State what is meant by the term one mole of molecules.
		(ii)	Calculate the number of moles of oxygen gas produced in this reaction, and
		` '	hence deduce the total number of moles of gas formed.

formed in the reaction.

		Moles of oxygen gas	
		Total moles of gas	
	(iii)	Calculate the number of moles, and the mass, of nitroglycerine detonated.	
		Moles of nitroglycerine	
		Mass of nitroglycerine	
			(7)
(b)	deto: deco	cond sample of nitroglycerine was placed in a strong sealed container and nated. The volume of this container was 1.00 × 10 ⁻³ m³. The resulting mposition produced a total of 0.873 mol of gaseous products at a temperature 00 K.	
		the ideal gas equation and use it to calculate the pressure in the container detonation.	
	(The	gas constant R = 8.31 J K ⁻¹ mol ⁻¹)	
	Idea	gas equation	
	Pres	sure	
		(Total 11 ma	(4) arks)

Ųδ.	step			on of ethane are shown below.	
			Step 1	Br₂ → 2Br・	
			Step 2	Br [*] + CH₃CH₃	
			Step 3	CH₃CH₂' + Br₂——►CH₃CH₂Br + Br'	
	(a)	(i)	Name this	s type of mechanism.	
		(ii)	Suggest a	n essential condition for this reaction.	
		(iii)	·	and 3 are of the same type. Name this type of step.	
		<i>(</i> ,)			
		(iv)		chanism, another type of step occurs in which free-radicals combine. type of step. Write an equation to illustrate this step.	
			Type of sto	ep	
			Equation		(5)
	(b)		her substitu I organic co	ntion in the reaction of bromine with ethane produces a mixture of ompounds.	
		(i)	Name a te	echnique which could be used to separate the different compounds ture.	
		(ii)		equation for the reaction between bromine and ethane which hexabromoethane, C_2Br_6 , by this substitution reaction.	

(c) The compound 1,2-dibromo-1,1,2,2-tetrafluoroethane is used in some fire extinguishers. Draw the structure of this compound.

(1)

(d) Halothane is used as an anaesthetic and has the following structure.

$$\begin{array}{c|c} & H & F \\ & \mid & \mid \\ Cl & -C & -C & -F \\ & \mid & \mid \\ Br & F \end{array}$$

(i) Give the systematic name of *halothane*.

Calculate the *M* of halothane. (ii)

(iii) Calculate the percentage by mass of fluorine in halothane.

(Total 11 marks)