Q1 .W	hich of the	se atoms has the large	st atomic radius?		
	A Ar	0			
	B CI	0			
	C Mg	0			
	D Na	0			
					(Total 1 mark)
Q2 .(a) Ta	ble 1 show	vs some data about fun	damental particles in an a	atom.	
	Particle	e proton	neutron	electron	
	Mass /	g 1.6725 × 10 ²⁴	1.6748 × 10 ²⁴	0.0009 × 10 ²⁴	
	(i)		can be represented as F		
	(ii)	Which one of the follodeflected by an electron	owing is a fundamental pa ic field?	nrticle that would not b	(1) e
		B neutron			
		C proton			
		Write the correct lette	r, A , B or C , in the box.		
					(1)

(b)	10.8					elative ato	omic mass of		
		is sample, boron exists as							
	(i)	Calculate the percentage abundance of [®] B in this naturally occurring sample of boron.							
			•••••						
								(2)	
	(ii)	State, in terms of fundar	nental pa	ırticles. wh	v the isot	topes ∘B a	and B have		
	()	similar chemical reaction		,					
			•••••			•••••		(1)	
(c)	Com	plete Table 2 by suggestir	ng a valu	e for the th	ird ionisa	ation ener	ay of boron		
(0)	00		Table			20011 01101	gy 0. 20.0		
			First	Second	Third	Fourth	Fifth		
	Ionis	ation energy / kJ mol ¹	799	2420		25 000	32 800		
								(1)	
(d)	\//rit	e an equation to show the	process	that occur	e whon t	ho sacan	d ionisation		
(d)		gy of boron is measured.							
								(1)	
								(1)	
(e)		ain why the second ionisagy of boron.	ition enei	rgy of boro	n is high	er than th	e first ionisatio	n	

					(Total 8 r	(1) marks)
Q 3.	proto	ns and	neutrons, around wh	ich electrons move	m with a central nucleus, made up of ed in orbits. After further research, the rels and sub-levels was recognised.	
	(a)	Compl	ete the following table	e for the particles in	n the nucleus.	
	Parti	cle	Relative charge	Relative mass		
	prot	on]	
	neut	ron				
					_	(2)
	(b)	State t	he block in the Period	dic Table to which	the element tungsten, W, belongs.	
	` '					
						(1)
	(c)	Isotope	es of tungsten include	e ⁸² W and ⁸⁶ W		
		(i) [Deduce the number o	f protons in 82W		
						(1)
		(ii) E	Deduce the number o	f neutrons in **W		
						(4)
						(1)
	(d)		er to detect the isotop ning the isotopes mus		ng a mass spectrometer, a sample d then ionised.	
		(i) (Give two reasons why	y the sample must	be ionised.	
		1	l			
				Page /		

		2						(2)
	(ii)		t can be adji nt isotopes t				enable ions formed by	40
								(1)
(e)		and expla pes ⁸² W an		ence, if any,	between th	ne chemical	properties of the	
	Differ	ence						
	Expla	nation						
								(2)
(f)		able below ample of to		elative abun	dance of ea	ach isotope	in the mass spectrum	
7			182	183	184	186		
ative a	abunda	nce /%	26.4	14.3	30.7	28.6		
			ove to calcu e your answ				mass of this sample	
							(Total 12 m	(2) narks)

(a)	Defi 	ne the term	atomic num	ber.			
(b)	Exp	lain why ato	ms of an ele	ement may ha	ave different	mass numbers.	
(c)	The	table below	refers to a	sample of kry	vpton.		
Relative <i>i</i>	m/z		82	83	84	86	
Relative a	abunda	ance / %	12	12	50	26	
	(ii)	Define the	term <i>relativ</i>	e atomic ma	ss.		
	(iii)	Calculate	the relative	atomic mass	of this samp	ole of krypton.	

(e)	In 1963, krypton was found to react with fluorine. State why this discovery was unexpected.							
			(1)					
(f)	Use a suitable model of atomic structure to explain the following experimental observations.							
	(i)	The first ionisation energy of krypton is greater than that of bromine.						
	(ii)	The first ionisation energy of aluminium is less than the first ionisation energy of magnesium.						
			(4)					
		(Total 13 ma	rks)					

Q5. (a) Complete the following table.

	Relative mass	Relative charge
Neutron		
Electron		

(2)

(b)	An atom has twice as many protons as, and four more neutrons than, an atom of ⁹ Be. Deduce the symbol, including the mass number, of this atom.						
		(2)					
(c)	Draw the shape of a molecule of BeCl₂ and the shape of a molecule of Cl₂O. Show any lone pairs of electrons on the central atom. Name the shape of each molecule.						
	$BeCl_2$ Cl_2O						
	Name of shape Name of shape	(4)					
		(+)					
(d)	The equation for the reaction between magnesium hydroxide and hydrochloric acid is shown below.						
	$Mg(OH)_2(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + 2H_2O(I)$						
	Calculate the volume, in cm³, of 1.00 mol dm³ hydrochloric acid required to react completely with 1.00 g of magnesium hydroxide.						
	(Total 12 m	(4) arks)					