Q1.A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids are identified from their R_r values.

Part of the practical procedure is given below.

- 1. **Wearing plastic gloves to hold a TLC plate**, draw a pencil line 1.5 cm from the bottom of the plate.
- 2. Use a capillary tube to apply a very small drop of the solution of amino acids to the mid-point of the pencil line.
- 3. Allow the spot to dry completely.
- 4. In the developing tank, add the developing solvent to a depth of not more than 1 cm.
- 5. Place your TLC plate in the developing tank.
- 6. Allow the developing solvent to rise up the plate **to the top**.
- 7. Remove the plate and quickly mark the position of the solvent front with a pencil.
- 8. Allow the plate to dry in a fume cupboard.

(a)	Parts of the procedure are in bold text.	
	For each of these parts, consider whether it is essential and justify your answer.	
		(4)
(b)	Outline the steps needed to locate the positions of the amino acids on the TLC plate and to determine their $\mathbf{R}_{\mbox{\tiny f}}$ values.	

		(4)
		(4)
(a)	Evoleia why different emine eside have different D. volues	
(c)	Explain why different amino acids have different R _r values.	
	a	(2) Fotal 10 marks)
	· ·	,
Q2. (a)	A chemist discovered four unlabelled bottles of liquid, each of which contained different pure organic compound. The compounds were known to be propan propanal, propanoic acid and 1-chloropropane.	l a -1-ol,
		.1.1 1
	Describe four different test-tube reactions, one for each compound, that coused to identify the four organic compounds.	lid be
	Your answer should include the name of the organic compound, the reagent	(s) used
	and the expected observation for each test.	

	(Ext	ra space)
(b)		th bottle was discovered labelled propan-2-ol. The chemist showed, using red spectroscopy, that the propan-2-ol was contaminated with propanone.
		chemist separated the two compounds using column chromatography. The mn contained silica gel, a polar stationary phase.
	Pure	contaminated propan-2-ol was dissolved in hexane and poured into the column. hexane was added slowly to the top of the column. Samples of the eluent (the tion leaving the bottom of the column) were collected.
	•	Suggest the chemical process that would cause a sample of propan-2-ol to become contaminated with propanone.
	•	State how the infrared spectrum showed the presence of propanone.
	•	Suggest why propanone was present in samples of the eluent collected first (those with shorter retention times), whereas samples containing propan-2-ol were collected later.

(8)

		(Fx	tra space)	
		(ZX	a opaco)	
			_	(4)
			(1	otal 12 marks)
Q3.		(a)	Name compound Y, HOCH ₂ CH ₂ COOH	
				(1)
	(b)		der suitable conditions, molecules of ${f Y}$ can react with each other to form	a
		poly	/mer.	
		(i)	Draw a section of the polymer showing two repeating units.	

	(ii)	Name the type of polymerisation involved.	
			(1)
(c)	one i	n Y is heated, an elimination reaction occurs in which one molecule of Y loses molecule of water. The organic product formed by this reaction has an rption at 1637 cm ⁻¹ in its infrared spectrum.	
	(i)	Identify the bond that causes the absorption at 1637 cm ⁻¹ in its infrared spectrum.	
			(1)
	(ii)	Write the displayed formula for the organic product of this elimination reaction.	
			(1)
	(iii)	The organic product from part (ii) can also be polymerised.	
	(111)	Draw the repeating unit of the polymer formed from this organic product.	
			(1)
(d)		oom temperature, 2-aminobutanoic acid exists as a solid. of the structure of the species present in the solid form.	

(e) The amino acid, glutamic acid, is shown below.

$$\begin{array}{c} {\rm COOH} \\ {\rm H_2N-C-CH_2-CH_2-COOH} \\ {\rm H} \end{array}$$

Draw the structure of the organic species formed when glutamic acid reacts with each of the following.

(i) an excess of sodium hydroxide

(1)

(ii) an excess of methanol in the presence of concentrated sulfuric acid

(1)

(iii) ethanoyl chloride

(1)

(f) A tripeptide was heated with hydrochloric acid and a mixture of amino acids was formed. This mixture was separated by column chromatography. Outline briefly why chromatography is able to separate a mixture of compounds. Practical details are **not** required.

Q4.Lysine and alanine are two amino acids.

$$\begin{array}{cccc} & H & CH_3 \\ H_2N-(CH_2)_4-C-COOH & H-C-COOH \\ & NH_2 & NH_2 \\ & Iysine & alanine \end{array}$$

	(1)

- (b) Draw structures to show the product formed in each case when lysine reacts with
 - (i) an excess of aqueous HCI

(1)

(ii) an excess of aqueous NaOH

	(iii) methanol in the presence of a small amount of concentrated H_2SO_4	(1
(c)	The mass spectrum of alanine gives a major peak at m/z = 44	(1
	Write an equation for the fragmentation of the molecular ion of alanine to give an ion that produces this peak. In your answer, draw the displayed formula for this fragment ion.	(2
(d)	Draw a dipeptide formed from one molecule of lysine and one molecule of alanine.	(1

(e)	is ar	e dipeptide in part (d) is hydrolysed in acid conditions and the mixture produced nalysed by column chromatography. The column is packed with a resin which as a polar stationary phase.	
	Sug	gest why lysine leaves the column after alanine.	
		(Total 9 ma	(2) arks)
Q5. (a)		use of the toxic nature of the copper(II) ion, a wide range of alternative fungal drugs has been developed for use in agriculture. One example is Zineb. [-S-C-N-CH ₂ -CH ₂ -N-C-S-] Zn ²⁺	
		ЗН НЗ Zineb	
	(i)	The negative ion in Zineb could act as a bidentate ligand.	
	(1)	On the structure above, draw a ring around each of two atoms that could provide the lone pairs of electrons when this ion acts as a bidentate ligand.	(1)
	(ii)	Calculate the M_r of Zineb. Give your answer to the appropriate precision.	
			(1)
	(iii)	Name the functional group formed at each end of the negative ion when all the sulfur atoms in the structure of Zineb are replaced by oxygen atoms.	(1)

(b)	Zineb has been investigated for harmful effects. Generally, Zineb has been be safe to use in agriculture. It is only slightly soluble in water and is sprayed plants. A breakdown product of Zineb is ethylene thiourea (ETU), which is vesseluble in water. The structure of ETU is shown below.	d onto
	HN NH H ₂ C-CH ₂	
	Determine the percentage, by mass, of sulfur in ETU (M_r = 102.1).	
		(1)
(c)	Chromatography is a technique used to show the presence of a small amou ETU in Zineb.	nt of
	Outline how this technique is used to separate and identify ETU from a sample of the boundary and the second of th	ole of
	Zineb powder.	
		(4) (Total 8 marks)