CHAPTER 32 STRUCTURE DETERMINATION (NMR SPECTROSCOPY)

- 1 N.m.r. spectroscopy can be used to study the structures of organic compounds.
- (a) Compound J was studied using ¹H n.m.r. spectroscopy.

		ĊH₃ J	
	(i)	Identify a solvent in which J can be dissolved before obtaining its ¹ H n.m.r. spec	ctrum.
			(1 mark)
	(ii)	Give the number of peaks in the $^1\mathrm{H}$ n.m.r. spectrum of \mathbf{J} .	
			(1 mark)
	(iii)	Give the splitting pattern of the protons labelled a.	
			(1 mark)
	(iv)	Give the IUPAC name of J .	
			(1 mark)
(b)		Compound K was studied using ¹³ C n.m.r. spectroscopy.	
		$CH_3 - \begin{matrix} b \\ C - CH_2 - CH_2 - C - CH_3 \\ 0 & 0 \end{matrix}$	
	(i)	Give the number of peaks in the ¹³ C n.m.r. spectrum of K .	
			(1 mark)
	(ii)	Use Table 3 on the Data Sheet to suggest a δ value of the peak for the carbon labelled b .	
			(1 mark)
	(iii)	Give the IUPAC name of K .	
			(1 mark)

Atenolol is an example of the type of medicine called a beta blocker. These medicines are used to lower blood pressure by slowing the heart rate. The structure of atenolol is shown below.

$$\begin{array}{c|c} & OH & H CH_3 \\ H_2N-C-CH_2-CH_2-CH-CH_2 & N-CH-CH_3 \\ \rho & K \end{array}$$

(a)	Give the name of each of the circled functional groups labelled ${\bf J}$ and ${\bf K}$ on the sof atenolol shown above.	structure
	Functional group labelled J	
	Functional group labelled K	(2 marks
(b)	The ¹ H n.m.r. spectrum of atenolol was recorded.	
	One of the peaks in the 1 H n.m.r. spectrum is produced by the CH $_2$ group laber the structure of atenolol. Use Table 2 on the Data Sheet to suggest a range of δ values for this peak. Name the splitting pattern of this peak.	lled <i>p</i> in
	Range of δ values	
	Name of splitting pattern	(2 marks
(c)	N.m.r. spectra are recorded using samples in solution. The ¹ H n.m.r. spectrum was recorded using a solution of atenolol in CDCl ₃	
(i)	Suggest why CDCl ₃ and not CHCl ₃ was used as the solvent.	
		(1 mark
(ii)	Suggest why CDCl ₃ is a more effective solvent than CCl ₄ for polar molecules satenolol.	such as
		(1 mark

(d) The ¹³C n.m.r. spectrum of atenolol was also recorded.

Use the structure of atenolol given to deduce the total number of peaks in the ¹³C n.m.r. spectrum of atenolol.

/1 mark)

(e) Part of the ¹³C n.m.r. spectrum of atenolol is shown below. Use this spectrum and **Table 3** on the Data Sheet, where appropriate, to answer the questions which follow.

(i) Give the formula of the compound that is used as a standard and produces the peak at $\delta = 0$ ppm in the spectrum.

(1 mark)

(ii) One of the peaks in the 13 C n.m.r. spectrum above is produced by the CH $_3$ group labelled q in the structure of atenolol. Identify this peak in the spectrum by stating its δ value.

(1 mark)

(iii) There are three CH_2 groups in the structure of atenolol. One of these CH_2 groups produces the peak at δ = 71 in the ¹³C n.m.r. spectrum above. Draw a circle around this CH_2 group in the structure of atenolol shown below.

(1 mark)

(f)	Atenolol is produced industrially as a racemate (an equimolar mixture of two enantiomers) by reduction of a ketone. Both enantiomers are able to lower blood pressure. However, recent research has shown that one enantiomer is preferred in medicines.	
(i)	Suggest a reducing agent that could reduce a ketone to form atenolol.	
	(1 mark)	
(ii)	Draw a circle around the asymmetric carbon atom in the structure of atenolol shown below.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(iii)	Suggest how you could show that the atenolol produced by reduction of a ketone was	
	a racemate and not a single enantiomer.	
	(2 marks)	
(iv)	Suggest one advantage and one disadvantage of using a racemate rather than a single enantiomer in medicines.	
	Advantage	
	Disadvantage	
	(2 marks)	