CHAPTER 32 STRUCTURE DETERMINATION (NMR SPECTROSCOPY) - 1 N.m.r. spectroscopy can be used to study the structures of organic compounds. - (a) Compound J was studied using ¹H n.m.r. spectroscopy. | | | ĊH₃
J | | |-----|-------|--|----------| | | (i) | Identify a solvent in which J can be dissolved before obtaining its ¹ H n.m.r. spec | ctrum. | | | | | (1 mark) | | | (ii) | Give the number of peaks in the $^1\mathrm{H}$ n.m.r. spectrum of \mathbf{J} . | | | | | | (1 mark) | | | (iii) | Give the splitting pattern of the protons labelled a. | | | | | | (1 mark) | | | (iv) | Give the IUPAC name of J . | | | | | | (1 mark) | | (b) | | Compound K was studied using ¹³ C n.m.r. spectroscopy. | | | | | $CH_3 - \begin{matrix} b \\ C - CH_2 - CH_2 - C - CH_3 \\ 0 & 0 \end{matrix}$ | | | | (i) | Give the number of peaks in the ¹³ C n.m.r. spectrum of K . | | | | | | | | | | | (1 mark) | | | (ii) | Use Table 3 on the Data Sheet to suggest a δ value of the peak for the carbon labelled b . | | | | | | (1 mark) | | | (iii) | Give the IUPAC name of K . | | | | | | (1 mark) | Atenolol is an example of the type of medicine called a beta blocker. These medicines are used to lower blood pressure by slowing the heart rate. The structure of atenolol is shown below. $$\begin{array}{c|c} & OH & H CH_3 \\ H_2N-C-CH_2-CH_2-CH-CH_2 & N-CH-CH_3 \\ \rho & K \end{array}$$ | (a) | Give the name of each of the circled functional groups labelled ${\bf J}$ and ${\bf K}$ on the sof atenolol shown above. | structure | |------|---|------------------| | | Functional group labelled J | | | | Functional group labelled K | (2 marks | | (b) | The ¹ H n.m.r. spectrum of atenolol was recorded. | | | | One of the peaks in the 1 H n.m.r. spectrum is produced by the CH $_2$ group laber the structure of atenolol. Use Table 2 on the Data Sheet to suggest a range of δ values for this peak. Name the splitting pattern of this peak. | lled <i>p</i> in | | | Range of δ values | | | | Name of splitting pattern | (2 marks | | (c) | N.m.r. spectra are recorded using samples in solution. The ¹ H n.m.r. spectrum was recorded using a solution of atenolol in CDCl ₃ | | | (i) | Suggest why CDCl ₃ and not CHCl ₃ was used as the solvent. | | | | | | | | | (1 mark | | (ii) | Suggest why CDCl ₃ is a more effective solvent than CCl ₄ for polar molecules satenolol. | such as | | | | | | | | (1 mark | (d) The ¹³C n.m.r. spectrum of atenolol was also recorded. Use the structure of atenolol given to deduce the total number of peaks in the ¹³C n.m.r. spectrum of atenolol. /1 mark) (e) Part of the ¹³C n.m.r. spectrum of atenolol is shown below. Use this spectrum and **Table 3** on the Data Sheet, where appropriate, to answer the questions which follow. (i) Give the formula of the compound that is used as a standard and produces the peak at $\delta = 0$ ppm in the spectrum. (1 mark) (ii) One of the peaks in the 13 C n.m.r. spectrum above is produced by the CH $_3$ group labelled q in the structure of atenolol. Identify this peak in the spectrum by stating its δ value. (1 mark) (iii) There are three CH_2 groups in the structure of atenolol. One of these CH_2 groups produces the peak at δ = 71 in the ¹³C n.m.r. spectrum above. Draw a circle around this CH_2 group in the structure of atenolol shown below. (1 mark) | (f) | Atenolol is produced industrially as a racemate (an equimolar mixture of two enantiomers) by reduction of a ketone. Both enantiomers are able to lower blood pressure. However, recent research has shown that one enantiomer is preferred in medicines. | | |-------|--|--| | (i) | Suggest a reducing agent that could reduce a ketone to form atenolol. | | | | (1 mark) | | | (ii) | Draw a circle around the asymmetric carbon atom in the structure of atenolol shown below. | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | (iii) | Suggest how you could show that the atenolol produced by reduction of a ketone was | | | | a racemate and not a single enantiomer. | | | | | | | | | | | | | | | | (2 marks) | | | (iv) | Suggest one advantage and one disadvantage of using a racemate rather than a single enantiomer in medicines. | | | | Advantage | | | | | | | | Disadvantage | | | | (2 marks) | |