Q1. (a) Consider the following amino acid. (i) Draw the structure of the amino acid species present in a solution at pH 12. (ii) Draw the structure of the dipeptide formed from two molecules of this amino acid. (iii) Protein chains are often arranged in the shape of a helix. Name the type of interaction that is responsible for holding the protein chain in this shape. (3) - (b) Consider the hydrocarbon **G**, (CH₃)₂C=CHCH₃, which can be polymerised. - (i) Name the type of polymerisation involved and draw the repeating unit of the polymer. Type of polymerisation | Repeating unit | |---| | | | | | | | | | | | | | | | (ii) Draw the structure of an isomer of G which shows geometrical isomerism. | | | | | | | | | | | | | | (iii) Draw the structure of an isomer of G which does not react with bromine
water. | | | | | | | | | | ر)
Total 7 marks) | | | | | | | | | | - | | The structures of the amino acids <i>alanine</i> and <i>glycine</i> are shown below. | | | Q2. | CH ₃
H ₂ N-C-COOH
H
H alanine | H

H₂N−C−COOH

H
glycine | |---|---| |---|---| (a) Give the systematic name for *alanine*. (b) Alanine exists as a pair of stereoisomers. | (1) | Explain the meaning of the term <i>stereolsomers</i> . | |-----|--| | | | | | | | | | (ii) State how you could distinguish between the stereoisomers. (c) Give the structural formula of the species formed by *glycine* at pH 14. (1) (4) (1) | o amino acids react together, a dipeptide is formed. Give the structural of the two dipeptides which are formed when <i>alanine</i> and <i>glycine</i> react | (d) | |---|-----| | 1 | | | | | | | | | | | | 2 | | | | | | | | | (2 | | | structural formula of the organic compound formed when <i>glycine</i> reacts anol in the presence of a small amount of concentrated sulphuric acid. | (e) | | | | | | | | (1
(Total 9 marks) | | | | | | ith | Q3. (a) Synthetic polyamides are produced by the reaction of dicarboxylic acids with compounds such as H ₂ N(CH ₂) ₆ NH ₂ | |-----|---| | | (i) Name the compound H ₂ N(CH ₂) ₆ NH ₂ | | | | | (2 | (ii) Give the repeating unit in the polyamide nylon 6,6. | | (2 | | | | (b) Synthetic polyamides have structures similar to those found in proteins. | | | (i) Draw the structure of 2-aminopropanoic acid. | | | | | | | | | | | | | | of | (ii) Draw the organic product formed by the condensation of two molecules of
2-aminopropanoic acid. | | | | | | | | C | (i) Draw the structure of 2-aminopropanoic acid. (ii) Draw the organic product formed by the condensation of two molecules of the condensation of two molecules of the condensation. | (2) | (c) | Compounds like H ₂ N(CH ₂) ₆ NH ₂ are also used to make ionic compounds such as X | |-----|--| | | shown below. | $$\begin{bmatrix} CH_3 & CH_3 \\ I & I \\ H_3C - N^+ - (CH_2)_6 - N^+ - CH_3 \\ I & CH_3 & CH_3 \end{bmatrix} \quad 2Br^-$$ ## Compound ${\bf X}$ | (i) | X belongs to the same type of compound as (CH₃)₄N⁺Br⁻Name this type of compound. | |-------|---| | (ii) | State a reagent which could produce X from H ₂ N(CH ₂) ₆ NH ₂ and give a necessary condition to ensure that X is the major product. **Reagent** Condition** **Condition** **The image of the i | | (iii) | Name the mechanism involved in this reaction to form X . | (Total 8 marks)