M1.(a) (i)

Allow CO_2^- and NH_2^+

NOTE - Two marks for this clip
 M1 for alanine section bonded through N
 M2 for alanine section bonded through C
 But penalise error in proline ring

- (b) (i) <u>3-methylpent-2-ene</u> Ignore E-Z, commas, spaces or missing hyphens
 - (ii) <u>4-amino-3-methylbutanoic acid</u> Ignore commas, spaces or missing hyphens

1

1

1

1

(iv) Non polar OR no polar groups / bonds (for attack by water / acids / alkalis / nucleophiles or for hydrolysis)

C-C bonds are strong

M2.(a) (i) (nucleophilic) <u>addition-elimination</u> Not electrophilic addition-elimination Ignore esterification

M4 for 3 arrows and Ip

1

1

1

4

[7]

M3 for structure

- If wrong nucleophile used or O–H broken in first step, can only score M2.
- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than δ + on C=O loses M2.
- If CI lost with C=O breaking lose M2.
- M3 for correct structure <u>with charges</u> but lone pair on O is part of M4.
- Only allow M4 after correct / very close M3.
- Ignore HCI shown as a product.

PhysicsAndMathsTutor.com

- a 20-50 (ppm) or single value or range entirely within this range If values not specified as a or b then assume first is a.
- b 50-90 (ppm) or single value or range entirely within this range

(ii) $-O-CH_2CH_2CH_2CH_2-C-O$ **OR** $-CH_2CH_2CH_2CH_2-C-O$

Condensation

1

1

1

1

1

(b)

To		•	Acidified potassium dichromate
----	--	---	-----------------------------------

Penalise wrong formula for Tollens or missing acid with potassium dichromate but mark on.

	<i>No reaction / no (visible) change / no silver mirror</i>	(visible) change / stays blue / no red	No reaction / no (visible) change / stays orange / does not turn green
--	---	---	--

Ignore 'clear', 'nothing'.

κ	Silver <u>mirror</u> / grey <u>ppt</u>	Red <u>ppt</u>	(orange) turns green
	grey <u>ppr</u>	(allow brick red or red-orange)	

1

1

1

1

- J Two (peaks) Allow trough, peak, spike.
- K Four (peaks)

Ignore details of splitting. If values not specified as J or K then assume first is J.

(c) If all the structures are unlabelled, assume that the first drawn ester is L, the second ester is M; the first drawn acid is N, the second P. The cyclic compound should be obvious.

Allow CH₃-.

Allow -CO₂CH₃ etc. Allow CH₂C(CH₃)COOCH₃.

M ester

Not cyclic esters.

M3.(a) (i) 2-hydroxypropanoic acid OR 2-hydroxypropan(-1-)oic acid Do not penalise different or missing punctuation or extra spaces. Spelling must be exact and order of letters and numbers as here. Can ignore -1- before –oic, but penalise any other numbers here.

> (ii) $C_{12}H_{22}O_{11} + H_2O \longrightarrow 4CH_3CH(OH)COOH$ Allow $4C_3H_8O_3$

OR

 $C_{12}H_{22}O_{11} + H_2O \longrightarrow 2CH_3CH(OH)COOH + C_6H_{12}O_6$ Allow $2C_3H_6O_3$

1

1

1

[19]

(b) (i) <u>Nucleophilic addition</u>

M4 for Ip, arrow and H+

Allow more than 2 decimal places but not fewer.

(iii) M1 buffer

Ignore acidic but penalise alkaline or basic.

Any two out of the three marks M2, M3 & M4

- M2 Large lactate concentration in buffer OR sodium lactate completely ionised
- M3 added acid reacts with / is removed by lactate ion or A⁻ or sodium lactate or salt
 OR equation H⁺ + A⁻ → HA
 Ignore reaction of H⁺ with OH⁻
 Ignore reference to equilibrium unless it is shown.
- M4 ratio [HA] / [A⁻] stays almost constant Ignore H⁺ or pH remains constant.

Max 2

1

1

(d) (i)

No marks if ester link missing

Correct ester link allow –COO–

NB Correct answer scores 2

Ignore n here (compare with (d)(iv). Ignore brackets

All rest correct with trailing bonds

(ii) (Poly)ester ie allow ester
 Not terylene.
 Ignore spaces and brackets in answer.

(iii) $H_{3}C$ $H_{3}C$ $H_{3}C$

(iv)

Not allow Ph for phenyl.

(v) In landfill, no air or UV, to assist decay
 OR not enough water or moisture (to hydrolyse polyester)
 Allow landfill has / contains:
 no or few bacteria / micro-organisms / enzymes compared with compost heap
 OR less oxygen
 OR lower temperature.

1

1

1

1

1

1

1

M5.(a)

(c) **Q** is biodegradable

Polar C=O group or δ + C in **Q** (but not in **P**)

PhysicsAndMathsTutor.com

Therefore, can be attacked by nucleophiles (leading to breakdown)

[7]