| Question number | Answer | Marks | Guidance | |-----------------|--|-------|--| | 1 (a) | Dimethylamine | 1 | | | 1 (b) | nucleophilic substitution $H_{3}C - NH_{2} H_{3}C - Br \longrightarrow H_{3}C - NH_{2} H_{3}C - NH_{2}$ $H_{3}C - NH_{2} H_{3}C - NH_{2}$ $H_{3}C - NH_{2} H_{3}C - NH_{2}$ | 5 | The curly arrow must be from the lone pair. Marks 1 and 2 are for the curly arrows if shown (M1 and M2). Mark 3 is for the structure of the intermediate. Mark 4 is to show the removal of the H ⁺ . You do not need to show the reagent here. Final mark is for the name of the mechanism. | | 1 (c) | quaternary ammonium salt
surfactant / detergent / fabric softener or conditioner/ hair
conditioner | 1 | | | 2 (a) | Sn or Fe/HCI
Sn or Fe/H ₂ SO ₄ OR H ₂ /Ni can be used as the reducing agent. CH_3 $CH_$ | 2 | Do not accept dilute or conc. for these 2 acids or you cannot have HNO ₃ at all. Do not accept NaBH ₄ /LiAlH ₄ or Na/C ₂ H ₅ OH. | | 2 (b) | CH ₃ | 1 | NH ₃ ⁺ is also acceptable. | | 2 (c) | G: CH ₂ NH ₂ H: NHCH ₃ | 2 | Do not accept the correct answers incorrectly labelled. | | 3 (a) | Nucleophilic substitution $CH_3CH_2CH_2 - CH_2 \xrightarrow{M_2} Br \longrightarrow CH_3CH_2CH_2CH_2 \xrightarrow{M_3} H \xrightarrow{H} H$ $H_3N^{\bullet} M_1 \longrightarrow H_3N^{\bullet} M_2 \longrightarrow H_3N^{\bullet} M_2 \longrightarrow H_3N^{\bullet} M_1 \longrightarrow H_3N^{\bullet} M_2 \longrightarrow H_3N^{\bullet} M_2 \longrightarrow H_3N^{\bullet} M_3 \longrightarrow H_3M^{\bullet} M_1 \longrightarrow H_3M^{\bullet} M_2 \longrightarrow $ | 5 | Mark 1, Mark 2 and Mark 4 are for the curly arrows (M1, M2 and M4). Mark 3 is for the structure of cation. Final mark is for the name of the mechanism. | | 3 (b) | Step 1: $CH_3CH_2CH_2Br + KCN \rightarrow CH_3CH_2CH_2CN + KBr$
(or CN^-) (or Br^-) | 3 | Do not accept HCN here. | |-------|---|---|---| | | Step 2 $CH_3CH_2CN + 2H_2 \rightarrow CH_3CH_2CH_2CH_2NH_2$ | | Accept 4[H] instead of 2H ₂ . | | 3 (c) | There is a lone pair (on N); R group increases electron density on N / has positive inductive effect | 1 | | | 3 (d) | CH ₃ CH ₂ N(CH ₃) ₂ | 1 | | | 4 (a) | CH ₃ CH ₂ CH ₂ Br | 1 | Allow CI instead of Br. | | 4 (b) | CH ₃ CH ₂ CN | 1 | | | 4 (c) | nucleophilic substitution or from CH ₃ CH ₂ CH ₂ Br gives less pure produce because further substitution occurs The impurity can be any one of (CH ₃ CH ₂ CH ₂) ₂ NH (CH ₃ CH ₂ CH ₂) ₃ N (CH ₃ CH ₂ CH ₂) ₄ N ⁺ Br ⁻ | 3 | Also accept 'have salts including NH ₄ Br as impurities'. | | 5 (a) | (nucleophilic) addition-elimination $CH_3 - C - CI$ $CH_3CH_2CH_2)NH_2$ $M1$ $CH_3CH_2CH_2 \xrightarrow{N_1} H$ $CH_3CH_2CH_2 \xrightarrow{N_1} H$ $CH_3 - C \xrightarrow{N_1} H$ $CH_3 - C \xrightarrow{N_1} H$ $CH_3 - C \xrightarrow{N_1} H$ $CH_2CH_2CH_3$ Allow wrong amine in M1 but penalise in M3 Allow C_3H_7 in M3 Minus sign on NH3 loses M1 (but not M4 if NH3 also shown here) | 4 | Allow attack by :NH₂CH₂CH₂CH₃ M2 not allowed independent of M1, but allow M1 for correct attack on C+ + rather than δ+ on C=O loses M2 If CI lost with C=O breaking, max 1 for M1 M3 for correct structure with charges but lone pair on O is part of M4 3 arrows in M4 can be shown in two separate steps. If M3 drawn twice, mark first answer eg ignore missing + if missed off second structure Only allow M4 after correct / very close M3 For M4, ignore RNH₂ removing H⁺ but lose M4 for Cl⁻ removing H⁺ in mechanism, but ignore HCl shown as a product. | # AQA Chemistry | | N-propylethanamide must be this name even if wrong | 1 | NOT | |-------|--|---|---| | | amine used | ' | N-propylethaneamide | | 5 (b) | H ₃ C — CH — CH ₃

NH ₂ Primary | 1 | Label and structure must both be correct for | | | H ₃ C — N — CH ₂ CH ₃

 H Secondary | 1 | each type to score the mark. Penalize wrong number of carbons but | | | H ₃ C — N — CH ₃ CH ₃ Tertiary | 1 | otherwise correct, first time only Not allow ambiguous $C_3H_7NH_2$ BEWARE No mark for the original amine $CH_3CH_2CH_2NH_2$ Allow C_2H_5 | | 6 (a) | (nucleophilic) addition-elimination | 1 | | | | $(CH_3CH_2) - C \longrightarrow CH_3CH_2 - C - CI$ $(C_2H_5) \cdot NH_2 \longrightarrow M1$ $M3 $ | 4 | minus on NH2 loses M1 M2 not allowed independent of M1, but allow M1 for correct attack on C++C=O loses M2 only allow M4 after correct or very close M3 lose M4 for Cl ⁻ removing H ⁺ in mechanism, but ignore HCl as a product | | | N-ethylpropanamide | 1 | Not
N-ethylpropaneamide | | 6 (b) | CH ₃ CN or ethan(e)nitrile or ethanonitrile | 1 | not ethanitrile
but allow correct
formula with ethanitrile | | | for each step wrong or no reagent loses condition mark | 1 | contradiction loses mark | | | Step 1 Cl ₂
uv or above 300 °C | 1 | wrong or no reagent loses condition mark | | | Step 2 KCN aq and alcoholic (both needed) | 1 | allow uv light /
(sun)light / uv radiation
not CN but mark on | | | Step 3 H ₂ /Ni or LiAlH ₄ or Na/C ₂ H ₅ OH | 1 | NOT HCN or KCN + acid, and this loses condition mark NOT NaBH₄ Sn/HCl (forms aldehyde!) ignore conditions | # **AQA Chemistry** | 7 (a) | Phenylamine accepts a proton/H ⁺ | 1 | | |-------|--|---|--| | 7 (b) | It is an ionic salt so it dissolves in a polar solvent like water. | 1 | |