Q1.	(a) solu	(a) Methylamine is a weak Brønsted-Lowry base and can be used in aqueous solution with one other substance to prepare a basic buffer.				
	(i)	Explain the term <i>Brønsted-Lowry base</i> and write an equation for the reaction of methylamine with water to produce an alkaline solution.				
		Brønsted-Lowry base				
		Equation				
	(ii)	Suggest a substance that could be added to aqueous methylamine to produce a basic buffer.				
	(iii)	Explain how the buffer solution in part (a)(ii) is able to resist a change in pH when a small amount of sodium hydroxide is added.				
			(5)			
(b)) Exp	plain why methylamine is a stronger base than ammonia.				
			(2)			
(с		ation is formed when methylamine reacts with a large excess of bromoethane. ne the mechanism involved in the reaction and draw the structure of the cation ned.				
	Nan	ne of mechanism				
	Stru	ucture				

Q2.		(a) com	Synthetic polyamides are produced by the reaction of dicarboxylic acids with pounds such as H ₂ N(CH ₂) ₆ NH ₂	
		(i)	Name the compound H ₂ N(CH ₂) ₆ NH ₂	
		(ii)	Give the repeating unit in the polyamide nylon 6,6.	
				(2)
	(b)	Syr	thetic polyamides have structures similar to those found in proteins.	
		(i)	Draw the structure of 2-aminopropanoic acid.	

(ii) Draw the organic product formed by the condensation of two molecules of 2-aminopropanoic acid.

(c) Compounds like H₂N(CH₂)₆NH₂ are also used to make ionic compounds such as **X**, shown below.

$$\begin{bmatrix} CH_3 & CH_3 \\ I & I \\ H_3C - N^+ - (CH_2)_6 - N^+ - CH_3 \\ I & CH_3 & CH_3 \end{bmatrix} 2Br^-$$

Compound ${f X}$

(i)	X belongs to the same type of compound as (CH₃)₄N⁺Br⁻ Name this type of compound.						
(ii)	State a reagent which could produce \mathbf{X} from $H_2N(CH_2)_6NH_2$ and give a necessary condition to ensure that \mathbf{X} is the major product.						
	Reagent						
	Condition						
(iii)	Name the mechanism involved in this reaction to form X .						
()	Name the mediament inversed in the reaction to form X.						
	(4) (Total 8 marks)						