

Further reaction / substitution / formation of 2° / 3° amines etc (1) use an excess of NH₃ (1)

Notes

- (a) allow S_N1 penalise: Br⁻ intead of NH₃ removing H⁺ for M4 not contamination with *other amines* (this is in the question) not diamines
- (b) allow because NH₃ is a nuclephile or benzene is (only) attacked by electrophiles or C–Br bond (in bromobenzene) is stronger / less polar or Br lp delocalized

 HNO_3 / H_2SO_4 without either conc scores (1) allow 20 – 60° for (1) (any 2 ex 3)

allow name or structure of nitrobenzene

other reducing agents: Fe or Sn with HCl (conc or dil or neither) not conc H₂SO₄ or conc HNO₃ allow Ni/H₂ Not NaBH₄ or LiAlH₄ ignore wrong descriptions for reduction step e.g. hydrolysis or hydration 6

5

Organic points

(2)

 <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

Penalise once per paper

allow CH₃- or -CH₃ or or H₃C-

M2.B

M3. (a) High E_{a} : $S_2O_{a^{2-}}$ repels I^- or both ions negative (1) $2Fe^{2*} + S_2O_{a^{2-}} \rightarrow 2Fe^{3*} + 2SO_{4^{2-}}$ (1) $2Fe^{3*} + 2I^- \rightarrow 2Fe^{2*} + I_2$ (1) [1]

Vanadium is a transition element or Magnesium is not a transition element (1)

Vanadium has variable oxidation states (1)

Magnesium only forms Mg²⁺, **or** has only one oxidation state **(1)** *N.B. Score two marks for "Only vanadium has variable oxidation states"*

 $H^{+} + AICI_{4^{-}} \rightarrow AICI_{3} + HCI (1)$ Lewis acid: $AICI_{3}$ accepts electron pair

> *N.B. penalise incorrect acyl chloride by one N.B. penalise chloroethane by two marks i.e. first equation mark, attack on benzene mark*

NH₄CI: Not a catalyst (1)

FeCl₃: A catalyst (1) has a low energy vacant shell or has spaces or vacancies in d shell or has a partially filled d shell or able to accept an electron pair or can form FeCl₄- (1)

[15]

9

6