		the hydrogenation of cyclohexene and of benzene, together with the of hydrogenation, are shown.	
		+ H_2 \longrightarrow $\Delta H^{\pm} = -120 \text{ kJ mol}^{-1}$	
		+ $3H_2$ \longrightarrow $\Delta H^{\oplus} = -208 \text{ kJ mol}^{-1}$	
(a)	(i)	Use these data to show that benzene is 152 kJ mol ⁻¹ more stable than the hypothetical compound cyclohexa-1,3,5-triene.	
			(1)
(State, in terms of its bonding, why benzene is more stable than cyclohexa-1,3,5-triene.	
			(1)
` '		e carbon–carbon bonds are labelled on the structures shown. e bonds are of different lengths.	
		w x y	

(1)

Write the letters \mathbf{w} , \mathbf{x} and \mathbf{y} in order of **increasing** bond length.

The	structures of two cyclic dienes are shown.	
	cyclohexa-1,4-diene	cyclohexa-1,3-diene
(i)	Use the enthalpy of hydrogenation data give the enthalpy of hydrogenation of cyclohexa-	
		(1)
(ii)	Predict a value for the enthalpy of hydrogena	ation of cyclohexa-1,3-diene.
		(1)
(iii)	Explain your answers to part (i) and part (ii) in two dienes.	n terms of the bonding in these
		(3) (Total 8 marks)
of the	following conversions involves reduction of the	e starting material.
	sider the following conversion.	, otal ang matorial

Q2.Each

(a)

(c)

$$O_2N$$
 \longrightarrow H_2N \longrightarrow NH_2

Identify a reducing agent for this conversion.

Write a balanced equation for the reaction using molecular formulae for the nitrogen-containing compounds and [H] for the reducing agent.

Draw the repeating unit of the polymer formed by the product of this reaction with benzene-1,4-dicarboxylic acid.			
(Extra space)			
(5)			
Consider the following conversion.			
Consider the following conversion.			
Identify a reducing agent for this conversion.			
State the empirical formula of the product.			
State the bond angle between the carbon atoms in the starting material and the bond angle between the carbon atoms in the product.			

(b)

			(4)
(c)	The	reducing agent in the following conversion is NaBH₄	
		$H_3C-C-CH_2CH_3 \longrightarrow H_3C-CH-CH_2CH_3$ O OH	
		Ö	
	(i)	Name and outline a mechanism for the reaction.	
		Name of mechanism	
		Mechanism	
			(5)
	(ii)	By considering the mechanism of this reaction, explain why the product formed is optically inactive.	
		to optionly madrice.	

(4)

- **Q3.** The hydrocarbons benzene and cyclohexene are both unsaturated compounds. Benzene normally undergoes substitution reactions, but cyclohexene normally undergoes addition reactions.
 - (a) The molecule cyclohexatriene does not exist and is described as hypothetical. Use the following data to state and explain the stability of benzene compared with the hypothetical cyclohexatriene.

+
$$H_2$$
 \longrightarrow $\Delta H^{\oplus} = -120 \text{ kJ mol}^{-1}$
+ $3H_2$ \longrightarrow $\Delta H^{\oplus} = -208 \text{ kJ mol}^{-1}$

//			
(Ext	ra space)	 	

(b) Benzene can be converted into a mine ${\bf U}$ by the two-step synthesis shown below.

The mechanism of Reaction 1 involves attack by an electrophile.

Give the reagents used to produce the electrophile needed in Reaction 1.

Write an equation showing the formation of this electrophile.

Outline a mechanism for the reaction of this electrophile with benzene.
(Extra space)

(c) Cyclohexene can be converted into amine ${\bf W}$ by the two-step synthesis shown below.

(6)

Suggest an identity for compound **V**.

For Reaction 3, give the reagent used and name the mechanism.

For Reaction 4, give the reagent and condition used and name the mechanism.

Equations and mechanisms with curly arrows are not required.	
(Extra space)	
Explain why amine ${f U}$ is a weaker base than amine ${f W}$.	

	•
(Extra space)	
Exact opace)	•
	•
	(3)
	(5)
	(Total 19 marks)