M1. (a) (i)

Reagent	Tollens Fehlings or Benedicts		K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄/H⁺	I₂/NaOH
			or acidified		
Propanal		red ppt or goes red (not red solution)	goes green	9	No reaction
Propanone	no reaction	no reaction	no reaction		Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^2$ -/H $^+$ then mark on)

3

1

1

1

1

1

1

1

1

(ii) propanal 3 peaks ignore splitting even if wrong

propanone 1 peak

(b) **X** is CH₃CH₂COOH or propanoic acid if both name and formula given, both must be correct, but

Y is CH₃CH(OH)CH₃ or propan-2-ol allow propanol with correct formula

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation

K₂Cr₂O₂/H⁺ or other oxidation methods as above allow Cr₂O₂²-H⁺ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

Step 2

	reduction or nucleophilic addition	reduction or hydrogenation
NaBH₄	LiAlH₄	H_2
in (m)ethanol or water or ether	ether or dry	Ni / Pt etc

	Step 3	esterification or (nucleophilic) addition-elimination or condensation	1	
		(conc) H ₂ SO ₄ or HCl	1	
		warm (allow without acid reagent if X and Y given as reagents)	1	
		or reflux or heat	1	[4 <i>E</i>
				[15
M2 .E	3			[1
M3.	(a)	2-chloropropanoic acid (1)	1	
	(b) δ1	72 Doublet ∴ <u>next to CH</u> (1)		
		44 Quartet in next to CH ₃ (1)	2	
			4	
	(c) Two	o triplets (1)	1	
	(d)			

or dry

(1)
$$\stackrel{\text{Cl}}{\underset{\text{CH}_3-\text{ CH}-\text{ COOH}}{\text{CH}_3-\text{ CH}-\text{ COOH}}} \rightarrow \stackrel{\text{CH}_3-\text{ CH}-\text{ COOH}}{\underset{\text{I}}{\underset{\text{NH}_2}{\text{H}-\text{N}}}} \rightarrow \stackrel{\text{CH}_3-\text{ CH}-\text{ COOH}}{\underset{\text{NH}_2}{\text{NH}_2}} \rightarrow \stackrel{\text{CH}_3-\text{ CH}-\text{ COOH}}{\underset{\text{NH}_2}{\text{NH}_2}}$$
(1) $\stackrel{\text{CH}_3-\text{ CH}-\text{ COOH}}{\underset{\text{NH}_2}{\text{NH}_2}} \rightarrow \stackrel{\text{CH}_3-\text{ CH}-\text{ COOH}}{\underset{\text{NH}_2}{\text{NH}_2}}$

 $\rho_N T$

(C1⁻)
$$H_3N - (CH_2)_4 - C - COOH (1)$$

(e) (i) $+ NH_3$ (C1⁻)

$${\rm H_2N-(CH_2)_4- \overset{H}{\underset{\rm I}{\subset}}-COO^-~(Na^+)} \qquad \textbf{(1)}$$
 (ii)

<u>Or</u> anhydride

; [12]

5

M4.B

[1]

1

1

1

1

1

1

M6. (a)

NB The bonds shown in the structure must be correct

Isomerism: E-Z isomerism

If written answer is correct, ignore incorrect labelling of structures.

If no written answer, allow correctly labelled structures.

Both COOH groups must be on the same side/ close together/ cis

No rotation about C=C axis

Structure

Allow

(b) $Br_2 / HBr / H_2SO_4 / H^+ / Br^+ / NO_2^+ (Mark M1)$

HOOC COOH H COOH HOOC COOH

$$C = C \xrightarrow{(l) M2} M4(l) + C - C - H \longrightarrow Br - C - C - H$$

$$H \xrightarrow{(l) M3} H \xrightarrow{(l) M3} :Br$$

NB If electrophile H⁺ / Br⁺ / NO₂⁺ allow M1, M2 and M4 If the acid is incorrect, M2 and M3 can still be scored Allow M4 consequentially if repeat error from part (a)

4

(c) e.g. 2NaOH + HO₂CCHCHCO₂H → NaO₂CCHCHCO₂Na + 2H₂O
 Both H replaced

1

Balanced for atoms and charges

1

NB Allow ionic equations and $2NaOH + C_4H_4O_4 \rightarrow C_4H_2O_4Na_2 + 2H_2O$

Allow one if structure incorrect but molecular formula correct

Allow one for a correct equation showing one H replaced

(d) M1 Two peaks

1

M2 No splitting or singlets

1

M3 (Two) non-equivalent protons or two proton environments

1

M4 No adjacent protons

1

M5 Same area under the two peaks or same relative intensity

1

NB Doublet could score M1 and M3 or M5 (Max 2)

More than two peaks CE = 0

Apply the "list principle" to incorrect answers if more than 3 given

Max 3

. .

[15]

M7.	(8	a)	M1	$K_p = (_PY)^3$. (_P	Z)²/ (pW)².(pX)	NB []	wrong		1
		M2	temperature						1
		М3	incre	increase particles have more energy or greater velocity/speed					
		M4	parti						
		M5	Reaction exothermic or converse						1
		М6							1
		M7							1
	•	Marks for other answers Increase in pressure or concentration Addition of a catalyst; Decrease in temperature; Two or more changes made; allow M1, M5, M6 Ada 3 Allow M1, M2, M6 Max 2						Max 3 Max 3	
	(b) (i) Advantage; reaction goes to completion, not reversible or faster Disadvantage; reaction vigorous/dangerous (exothermic must be qualified) or HCl(g) evolved/toxic or CH ₃ COCl expensive NB Allow converse answers Do not allow reactions with other reagents e.g. water or ease of separation						ole	1	
							e.g. water	1	
	(ii) $\Delta S = \Sigma S$ products – ΣS reactants						1		

```
\Delta S = (259 + 187) - (201 + 161)

1

\Delta S = 84 \text{ (JK}^{-1} \text{ mol}^{-1}) \text{ (Ignore units)}

Allow – 84 to score (1) mark

1

= -21.6 - 298 × 84/1000
= -46.6 kJ mol or -46 600 J mol or -46.6 kJ mol or -46.6 without units

(Mark ΔG consequentially to incorrect ΔS)

(e.g. \Delta S = -84 \text{ gives } \Delta G = +3.4 \text{ kJ mol}^{-1})
```

[15]