M1. (a) (nucleophilic) addition-elimination;

(M3 for structure) (M4 for 3 arrows and lone pair) (M2 not allowed independent of M1, but allow M1 for correct attack on C+ if M2 show as independent first.) (+on C of C=O loses M2 but ignore δ + if correct) (CF removing Ft loses M4)

СН₃СН₂ — с

(If MS lost above for wrong C chain, do not penalise same error again here)

5

1

1

(b) $CH_3CH_2COCI + AICI_3 \rightarrow [CH_3CH_2CO]^+ + AICI_4^-;$

(penalise wrong alkyl group once at first error) (position of + on electrophile can be on O or C or outside []) (penalise wrong curly arrow in the equation or lone pair on AICl₃)

(don't per RCO+)	alise position of + on C of	M2 structure)	
			3
	$AICI_4^- + H^+ \longrightarrow AICI_3 + HCI_3^-$		
	(or can be gain	ed in mechanism);	1
(c) M1 CH ₃ CH ₂ COCI + H ₂ O \rightarrow CH ₃ CH ₂ COOH + HCI 1 (penalise wrong alkyl group once at first error)			1
	1		
	M3 moles of CH ₃ CH ₂ COCI	= 1.48/92.5 = 0.016 1	1
	M4 moles NaOH = 2 × 0.01 (allow for × 2 conseq to wro	16 = 0.032 1 ong no of moles)	1
	M5 volume of NaOH = 0.03 (with correct units) (if ×2 missed in M4 lose M3	32/0.42 = 0.0762 dm³ or 76.2 cm³ 1 5 also)	1

M2.	(a)	(i) An appropriate alkene; $CH_3CH_2CHCH_2$ o	r (CH ₃) ₂ CCH ₂ 1
		Isomer 1	1
		Isomer 2	1
		Position isomerism	1
		Mechanism	
		electrophilic attack and electron shift to Br (U	nless H⁺ used)

	carbocation	1		
	reaction with carbocation [Allow mechanism marks for the alkene CH₃CHCHCH₃] [Allow one mark if mechanism for minor product given]	1		
(ii)	An appropriate carbonyl; CH₃CH₂CHO	1		
	Mechanism nucleophilic attack and electron shift to O			
	anion intermediate	1		
	reaction with anion [Allow mechanism marks for the carbonyl (CH₃)₂CO]	1		
	Isomer 1	1		
	Isomer 2	1		
	Optical isomerism NB Isomer structures must be tetrahedral NB Penalise "stick" structures once in part (a)	1		
(b)	QoL Large charge on carbonyl carbon atom due to bonding to O and Cl	1		
	Nucleophiles have electron pairs which can be donated	1		
	Equation Species	1		
	Balanced	1		

1

[18]

M3.		(a)	М1	$K_{p} = (_{P}Y)^{3}. (_{P}Z)^{2}/ (_{P}W)^{2}.(_{P}X)$	NB [] wrong		1
		М2	tem	perature			1
		М3	incr	ease			1
		M4 particles have more energy or greater velocity/speed					1
		М5	<i>M5</i> more collisions with $E > E_a$ or more successful collisions				1
		М6	Rea	action exothermic or convers	e		1
		М7	Equ	illibrium moves in the left			1
		Mai Incre Add Dec Two	rks foi ease i ition c rease or mo	r other answers in pressure or concentration of a catalyst; in temperature; ore changes made;	allow M1, M5, M6 allow M1, M5, M6 allow M1, M2, M6 allow M1, M6	Max 3 Max 3 Max 3 Max 2	
	(b)	(i)	Adv or fa	vantage; reaction goes to co aster	mpletion, not reversible	9	1
	Disadvantage; reaction vigorous/dangerous (exothermic must be qualified) or HCl(g) evolved/toxic or CH₃COCI expensive NB						
				or ease of separation	with other reagents e.g	j. water	1
		(ii)	ΔS	= Σ S products – Σ S reactant	S		1
				□ ΔS = (259 + 187) – (201 +	161)		1

1	
$\Box \Box \Box \Box \Box \Box \Delta G = \Delta H - T \Delta S$	
= - 21.6 - 298 × 84/1000 = - 46.6 kJ mol⁻¹ or - 46 600 J mol⁻¹ 1	
Allow (2) for -46.6 without units (Mark AG consequentially to incorrect $4S$)	
(e.g. $\Delta S = -84$ gives $\Delta G = +3.4$ kJ mol ⁻¹)	
	[15]