functional groups in the molecule.			
Con	nsider the reaction of CH ₃ CH ₂ COCl and of CH ₃ CH ₂ CH ₂ Cl with ammonia.		
(a)	For the reaction of CH₃CH₂COCl with ammonia, name and outline the mechanish and name the organic product.		
	(Extra chaca)		
	(Extra space)		

For the reaction of CH₃CH₂CH₂CI with an excess of ammonia, name and outline the

(6)

(b)

mechanism and name the organic product.				
(Extra space)				

(c)	Suggest one reason why chlorobenzene (C₅H₅Cl) does not react with ammonia under normal conditions.
	(Extra space)
	(1) (Total 13 marks)

Q2. (a) Name and outline a mechanism for the reaction of CH₃CH₂NH₂ with CH₃CH₂COCI

Name the amide formed.

(b) Haloalkanes such as CH ₃ Cl are used in organic synthesis.			
	Outline a three-step synthesis of CH ₃ CH ₂ NH ₂ starting from methane. Your first step should involve the formation of CH ₃ CI		
	In your answer, identify the product of the second step and give the reagents and conditions for each step.		
	Equations and mechanisms are not required.		
	(6) (Total 12 marks)		
	Esters have many important commercial uses such as solvents and artificial purings in foods.		
Esters can be prepared in several ways including the reactions of alcohols with carboxylic acids, acid anhydrides, acyl chlorides and other esters.			
(a)	Ethyl butanoate is used as a pineapple flavouring in sweets and cakes.		
	Write an equation for the preparation of ethyl butanoate from an acid and an alcohol.		

Q3.

Give a catalyst used for the reaction.	
	(4
Butyl ethanoate is used as a solvent in the pharmaceutical industry.	
Write an equation for the preparation of butyl ethanoate from an acid anhydride and an alcohol.	
	(3
Name and outline a mechanism for the reaction of CH ₃ COCI with CH ₃ OH to form an	

(d)	The ester shown below occurs in vegetable oils. Write an equation to show the formation of biodiesel from this ester.		
	CH ₂ OOCC ₁₇ H ₃₁		
	CHOOCC ₁₇ H ₃₃		
	 CH ₂₃ OOCC ₁₇ H ₂₉		
		(3)	
(e)	Draw the repeating unit of the polyester Terylene that is made from benzene-1,4-dicarboxylic acid and ethane-1,2-diol.		
	Although Terylene is biodegradeable, it is preferable to recycle objects made from Terylene.		
	Give one advantage and one disadvantage of recycling objects made from Terylene.		

(Total 5 marks)

Outill	led below.
Step Step	1: The sample is dissolved in a <u>minimum volume</u> of <u>hot water</u> . 2: The solution is <u>filtered hot</u> . 3: The filtrate is <u>cooled in ice</u> to form crystals. 4: The crystals are collected by filtration, <u>washed with cold water</u> and left to dry.
Expla	ain the purpose of each underlined point.
Minin	num volume
Hot v	vater
Filter	ed hot
Coole	ed in ice
Wasł	ned with cold water

Q4.Salicylic acid can be used to make aspirin. Before using a sample of salicylic acid to make aspirin, a student purified the acid by recrystallisation. The method for recrystallisation is