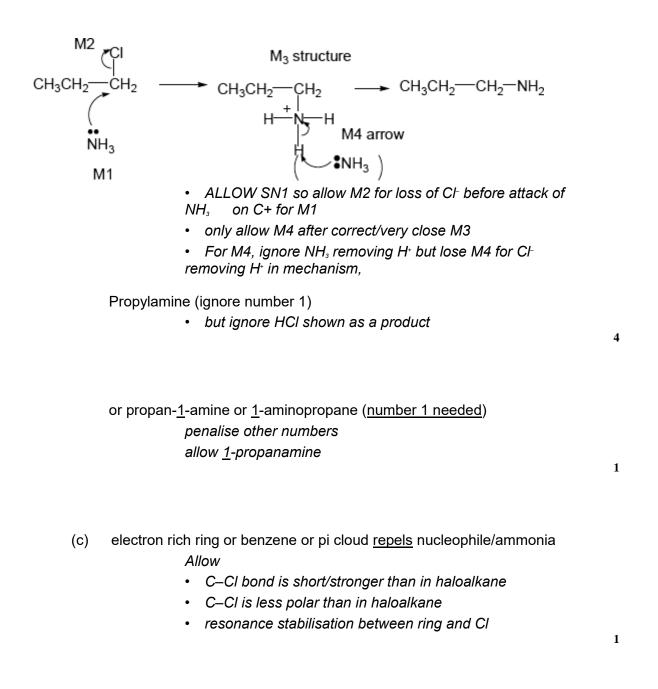

M1.(a) (Nucleophilic) addition-elimination

- Minus sign on NH₃ loses M1(but not M4 also)
- M2 not allowed independent of M1, but

- allow M1 for correct attack on C+
- + rather than δ + on C=O loses M2
- If CI lost with C=O breaking, max1 for M1
- *M3* for correct structure <u>with charges</u> but lp on O is part of *M4*
- only allow M4 after correct/very close M3
- For **M4**, ignore NH₃ removing H⁺ but lose **M4** for Cl-removing H⁺ in mechanism,
- but ignore HCl shown as a product

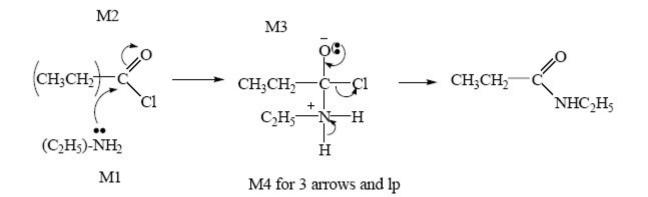
propanamide (Ignore -1-) penalise other numbers penalise propaneamide and N-propanamide


1

4

1

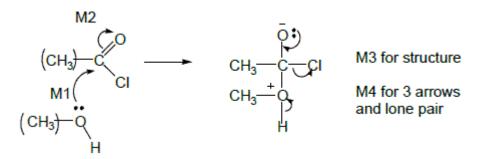
(b) Nucleophilic substitution


- Minus sign on NH₃ loses M1 (not M4 also)
- + rather than δ + on C=O loses M2

M2. (a) (nucleophilic) addition-elimination

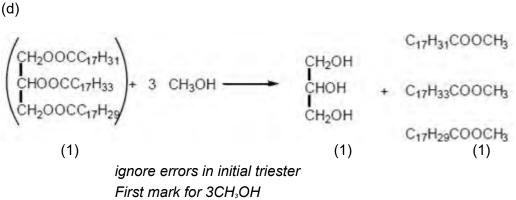
1

[13]


N-ethylpropanamide minus on NH₂ loses M1 M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2 only allow M4 after correct or very close M3 lose M4 for CI⁻ removing H⁺ in mechanism, but ignore HCI as a product Not N-ethylpropaneamide 4

1

(b) CH₃CN or ethan(e)nitrile or ethanonitrile not ethanitrile but allow correct formula with ethanitrile 1 for each step wrong or no reagent loses condition mark contradiction loses mark 1 Step 1 Cl₂ uv or above 300 °C wrong or no reagent loses condition mark 1 Step 2 KCN 1 aq and alcoholic (both needed) allow uv light/(sun)light/uv radiation 1 Step 3 H_2/Ni or LiAlH₄ or Na/C₂H₅OH not CN⁻ but mark on NOT HCN or KCN + acid, and this loses condition mark NOT NaBH₄ Sn/HCl (forms aldehyde!) ignore conditions


М3.		(a)	M1 CH ₃ CH ₂ CH ₂ COOH not C ₃ H ₇ COOH	1
		M2	CH ₃ CH ₂ OH or C ₂ H ₅ OH	1
		М3	CH₃CH₂CH₂COOCH₂CH₃ + H₂O allow C₃H₂COOC₂H₅ penalise M3 for wrong products and unbalanced equation	1
		М4	H₂SO₄ or HCl or H₃PO₄ conc or dil or neither not HNO₃	1
	(b)	M1		1
		M2	(CH ₃ CO) ₂ O	1
		М3	→ CH₃COOCH₂CH₂CH₂CH₃ + CH₃COOH allow CH₃COOC₄Hҙ penalise M3 for wrong products and unbalanced equation	1

(c) (nucleophilic) addition-elimination

[12]

not acylation alone M2 not allowed indep of M1 but allow M1 for correct attack on C+ +C=O loses M2 only allow M4 after correct or v close M3 ignore CI- removing H⁺

Third mark for all three esters

(e)

not - C2H4 -

n

First mark for correct ester link second mark for the rest including trailing bonds If ester link wrong, lose second mark also

- Adv reduces landfill saves raw materials lower cost for recycling than making from scratch reduces CO₂ emissions by not being incinerated not allow cost without qualification ignore energy uses
 Disad difficulty/cost of collecting/sorting/processing resolute text and the for ariginal neuropage and the series and the series of the series
- not allow cost without qualification ignore energy uses

5

3

2

1

M4.Minimum volume and hot water:

Note that this question is worth a total of 5 marks.

Any two from:
to obtain saturated solution
to increase yield / reduce amount left in solution
enable crystallisation (on cooling) Do not allow 'because acid doesn't dissolve well in cold water'. Max 2
Filtered hot: to remove <u>insoluble impurities</u> / to prevent crystals forming during filtration
Cooled in ice: to increase amount of crystals that are formed Do not allow 'to cool quickly'. 1
Washed with cold water: to remove soluble impurities

Allow 'washing with <u>hot</u> water would dissolve some of the crystals'.