M1.(a) (i)
$$(CH_3)_2CHOH + (CH_3CO)_2O \rightarrow CH_3COOCH(CH_3)_2 + CH_3COOH$$
Allow $CH_3CO_2CH(CH_3)_2$ and CH_3CO_2H

Ignore $(CH_3)_2 - C$ in equation

(1)-methylethyl ethanoate OR

Propan-2-yl ethanoate

Ignore extra or missing spaces, commas or hyphens

(ii)

M4 for 3 arrows and lp

NO Mark for name of mechanism

M1 for lone pair on O and arrow to C or to mid-point of space between O and C

M2 for arrow from C=O bond to O

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than δ + on C=O loses M2
- If CI lost with C=O breaking, max1 for M1

M3 for correct structure <u>with charges</u> (penalise wrong alcohol here) but lone pair on O is part of M4

Penalise (CH₃)₂ -C in M3

M4 for lone pair on O and three arrows

- Only allow M4 after correct / very close M3
- M4 can be gained over more than one structure
- Ignore CI− removing H⁺

4

1

1

$$CH_2OOCC_{17}H_{31}$$
 CH_2OH CH_2OH $CH_2OCC_{17}H_{33}$ $+ 3NaOH$ \longrightarrow $CHOH$ $+ C_{17}H_{33}COONa$ $CH_2OOCC_{17}H_{29}$ CH_2OH CH_2OH

Penalise covalent Na e.g. -O-Na

LHS 1 RHS 1

(ii)
$$C_{17}H_{33}COOCH_3$$

Allow $C_{19}H_{36}O_2$

[9]

1

M2.(a) (i) M_r N-phenylethanamide = 135.0

Theoretical yield = $135.0 \times 2 (1.15 / 284.1) = 1.09 g$

Answer recorded to 3 significant figures.

1

1

1

(ii)
$$\frac{0.89}{\text{Ans to (a)}} \times 100$$

= 81.4 %

Mark consequentially to (a) Allow 81 to 82

1

(b) (i) Dissolve the product in the **minimum** volume of water / solvent (in a boiling tube / beaker)

If dissolving is not mentioned, CE = 0 / 4

1

Hot water / solvent

Steps must be in a logical order to score all 4 marks

1

Allow the solution to cool and allow crystals to form.

1

Filter off the pure product under reduced pressure / using a Buchner funnel and side arm flask

Ignore source of vacuum for filtration (electric pump, water

(ii) Measure the melting point

1

Use of melting point apparatus or oil bath

1

Sharp melting point / melting point matches data source value

1

(iii) Any **two** from:

Product left in the beaker or glassware Sample was still wet

Sample lost during recrystallisation.

Do not allow "sample lost" without clarification.

2 Max

(c) An identified hazard of ethanoyl chloride

E.g. "Violent reaction", "harmful", "reacts violently with water" Do not allow "toxic", "irritant" (unless linked with HCl gas).

1

1

HCl gas / fumes released / HCl not released when ethanoic anhydride used

[15]

M3.(a) (nucleophilic) addition-elimination

Not electrophilic addition-elimination

1

M4 for 3 arrows and lp

Allow C₀H₅ or benzene ring Allow attack by :NH₂C₀H₅

M2 not allowed independent of M1, but allow M1 for correct

	part of M4	
	M4 (for three arrows and lone pair) can be shown in more than one structure	
		4
(b)	The minimum quantity of hot water was used:	
	To ensure the hot solution would be saturated / crystals would form on cooling	1
	The flask was left to cool before crystals were filtered off:	
	Yield lower if warm / solubility higher if warm	1
	The crystals were compressed in the funnel:	
	Air passes through the sample not just round it Allow better drying but not water squeezed out	
		1
	A little cold water was poured through the crystals:	
	To wash away soluble impurities	
		1
(c)	Water	
(0)	Do not allow unreacted reagents	1
	Press the sample of crystals between filter papers	
	Allow give the sample time to dry in air	1
(d)	M_r product = 135.0	1

M3 for correct structure with charges but lone pair on O is

attack on C+

Expected mass =
$$5.05 \times \frac{135.0}{93.0} = 7.33 \text{ g}$$

1

Percentage yield =
$$\frac{4.82}{7.33}$$
 × 100 = 65.75 = 65.8(%)

Answer must be given to this precision

1

(e)

OR

 $\mathsf{C_6H_5NHCOCH_3} + \mathsf{NO_2^+} \quad \rightarrow \quad \mathsf{C_6H_4(NHCOCH_3)NO_2} + \mathsf{H^+}$

1

(f) Electrophilic substitution

1

(g) Hydrolysis

1

(h) Sn / HCl

Ignore acid concentration; allow Fe / HCI

1