M1. B	[1]
M2. B	[1]
M3. C	[1]
M4. B	[1]
M5. B	[1]
M6. C	[1]
M7. B	[1]
M8. D	[1]
M9. D	

M10.A

[1]

M11.D

[1]

M12. (a) Pentan-2-one

1

(b) (i) $1680 - 1750 \text{ (cm}^{-1}$)

1

(ii) $3230 - 3550 \text{ or } 1000 - 1300 \text{ (cm}^{-1})$

1

(iii) 4

1

(c)

Reagent	K₂Cr₂O ₇ /H⁺	KMnO₄/H⁺	Na	CH ₃ COOH/ H ₂ SO ₄	1
with C	no reaction	no reaction	no reaction	no reaction	1
with D	goes green	goes colourless	effervescence	smell	1

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or Cr_2O_7 2 -/ H^+ then mark on)

(d)

Reagent	Tollens	Fehlings or Benedicts
with E	silver (mirror)	red ppt or goes red (not red solution)
	(111111-01)	(Hot rea Solation)

1 1

M14.(a) Mechanism

$$(CH_3CH_2CH_2) \xrightarrow{C} (H) \xrightarrow{M2} CH_3CH_2CH_2 \xrightarrow{C} (H) \xrightarrow{M4} CH_3CH_2CH_2 \xrightarrow{C} (H) \xrightarrow{C} (H) \xrightarrow{M3} CH_3CH_2CH_2 \xrightarrow{C} (H) \xrightarrow{C$$

Allow C₃H₇ if structure shown elsewhere penalise HCN splitting if wrong

Name of product: 2-hydroxypenta(neo)nitrile (1)

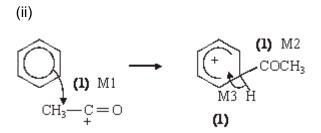
or 1-cyanobutan-1-ol

5

(b) Mechanism

$$(CH_3CH_2) - C - CI \longrightarrow CH_3CH_2 - C - CI \longrightarrow CH_3CH_2 - C \bigcirc OCH_3$$

$$(CH_3) \stackrel{\bullet}{\cap}_{H} M1 \qquad CH_3 \stackrel{\bullet}{\cap}_{H} \qquad \text{structure (1) M3}$$


$$(CH_3) \stackrel{\bullet}{\cap}_{H} M1 \qquad CH_3 \stackrel{\bullet}{\cap}_{H} \qquad \text{structure (1) M3}$$

$$(CH_3) \stackrel{\bullet}{\cap}_{H} M1 \qquad CH_3 \stackrel{\bullet}{\cap}_{H} M2$$

Name of organic product: methylpropanoate (1)

5

(c) (i) ([) CH_3CO (])⁺ (1)

4

Notes

(abc) extra curly arrows are penalised

- (a) be lenient on position of negative sign on : CN- but arrow must come from lp
- (a)/(b) C alone loses M2 but can score M1 for attack on C+, similarly C CI
- (a) allow 2-hydroxypentanonitrile or 2-hydroxypenta(ne)nitrile ... pentylnitrile
- (b) in M4, allow extra: Cl⁻ attack on H, showing loss of H⁺
- (c) (i) allow formula in an "equation" (balanced or not) be lenient on the position of the + on the formula
 - (ii) for M1 the arrow must go to the C or the + on the C don't be too harsh about the horseshoe, but + must not be close to the saturated CM3 must be final step not earlier; allow M3 even if structure (M2) is wrong

[14]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) Structures

penalise sticks (i.e.
$$-\mathbb{C}$$
) once per paper

Penalise once per paper

$$\begin{array}{ccc} \underline{\text{allow}} & \text{CH}_3 - \text{or} & -\text{CH}_3 \\ \text{or} & \text{H}_3\text{C} - \end{array} \quad \text{or} \quad \text{CH}_3$$

M15. (a) $K_2Cr_2O_7/H_2SO_4$ reuced by

CH₃CH₂CH₂CH₂OH (1)

oxidised to $CH_3(CH_2)_2CHO$ (1) and $CH_3(CH_2)_2COOH$ (1)

CH₃CH₂CH₂CHO (1)

oxidised to CH₃(CH₂)₂COOH (1)

Equation: $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ (1)

Note: Deduct one if all three compounds given as reducing

6

3

agents.

(b) Tollens' reduced by CH₃CH₂CHO (1)

oxidised to CH₃(CH₂)₂COOH (1)

Equation $[Ag(NH_3)_2]^+ + e^- \rightarrow Ag + 2NH_3$ (1)

(c) CH₃CH₂CH₂CH₂OH (1)

Product CH₃CH₂CH₂CH₂OOCCH₃ (1)

(CH₃)₃COH

Product (CH₃)₃COOCCH₃ (1)

4

2

(d) CH₃CH₂CH₂OH has five peaks (1)

(CH₃)₃COH has two peaks (1)

[15]

M16. (a) (i) propyl methanoate **(1)** not propanyl

- · A wrong reagent or no reagent scores zero
- An incomplete reagent such as silver nitrate for Tollens, or potassium dichromate loses the reagent mark, but can get both observation marks
- penalise observations which just say colour change occurs or only state starting colour
- (ii) Reagent: NaHCO₃ (1)
 Observation with **C**: no reaction (1)
 Observation with **D**: effervescence (1)
 for **C** and **D** NOT Tollens

Test	an identified (hydrogen) carbonate	acidified K ₂ Cr ₂ O ₇	acidified KMnO₄	correct metal	UI or stated indicator	PCI ₅
Observation with C	no reaction	goes green	goes colourless	no reaction	no change	no reaction
observation with D	bubbles or CO ₂	no change	no change	bubbles or H ₂	red or correct colour pH 3 – 6.9	(misty) fumes

4

(b) (i) Reagent: pentan-2-one (1)
or 2-pentanone
but not pent-2-one or pentyl

(ii) Reagent: Tollen's or Fehling's (1)

Observation with E: no reaction (1)

Observation with F: silver mirror or red ppt (1)

for **E** and **F**

Test	Tollens	Fehlings or Benedicts	iodoform or I₂/NaOH	acidified K₂Cr₂O ₇	Schiff's
observation with E	no reaction	no reaction	yellow (ppt)	no change	no reaction
observation with F		red or ppt not red solution	no reaction	goes green	goes pink

4

$$CH_3CH_2$$
— C — CHO
 CH_3
 CH_3

must be aldehyde. Allow C_2H_5 for CH_3CH_2 otherwise this is the only answer

1

[9]