

M3 structure;

(be lenient on position of charge on CN-) (M2 not allowed independent of M1, but allow M1 for correct attack on C+ if M2 show as independent first.) (+on C of C=O loses M2 but ignore δ + if correct) (M4 for arrow and lone pair (only allow for correct M3 or close))

geometric(al) or cis-trans

(c) (i)

(one unit only) (ignore brackets or n) (trailing bonds are

1

1

1

4

(ii) can be hydrolysed

OR

can be reacted with/attacked by acid/base/nucleophiles/H₂O/OH-;

(d) (i)

$$CH_3 CH_2 - C - H$$

 COO^-
(allow -NH₃*)

(ii)

....

CH₃ CH₂
$$- C - H$$

COOH
(or zwitterions product)

(iii) nucleophilic substitution;

[14]

Potassium (OR sodium) dichromate(VI) OR correct formula M2. (a) (i) OR potassium manganate(VII) (Oxidation state not needed, but must be correct if included) (Penalise errors in the formula or oxidation state, but mark conditions)

1

1

1

			Acidi	fied OR H₂SO₄ / ŀ (Ignore heat or r (Credit "acidified	HCI (N reflux) I" as pa	OT with KMnO₄) art of reagent)) / H₃PO₄ /	HNO₃
			Oxida	ation or redox				
		(ii)	NaBł	H₄ OR LIAIH₄ OR	H₂/Ni			
			CH₃C	$COCH_3 + 2[H] \rightarrow 0$ (Credit H_2 in the	CH₃CH <i>equati</i>	l(OH)CH₃ ion if H₂ has bee	en chosen	as reagent)
(b) (i) $\begin{array}{c} CH_{3}CH_{2}C=0 \\ i \\ H \end{array}$ (<i>Structure must show aldehyde structure</i>) (<i>Credit C</i> ₂ H ₅ as alternative to CH ₃ CH ₂)					ıre)			
		(ii)						
M1 reag amm	Tolle ent Of ioniac	ens' R al silve	er	OR Fehling's solution		OR <u>acidified</u> potassium dichromate		
OR /	le ∖gNO₃	+ NH	3					1
			M2 s	tays colourless	stay	rs blue	stays or	ange
				(Provided reage change", "nothin	nt is co ıg", "no	orrect, credit "no o observation" fo	o reaction or M2)	", "no
M3 <u>depc</u> OR b prec	silver <u>osit</u> black / ipitate	<u>mirror</u> grey	<u>r</u> /	red / brown / ora precipitate / solic	inge <u>d</u>	goes green		1
				(Credit other cor	rrect re	eagents and obs	ervation)	+
	(For M1, penalise AgNO ₃ alone, penalise Ag(NH ₃) ² , penalise "potassium dichromate", etc., but, in each case, mark on and							

1

M3.C

[1]

[1]

M4.A

M5. (a) (i)

Reagent	Tollens	Fehlings or Benedicts	K₂Cr₂Oァ/H⁺	KMnO₄/H⁺	l₂/NaOH
			or acidified		
Propanal	silver (mirror)	red ppt or goes red (not red solution)	goes green	goes colourless	No reaction
Propanone	no reaction	no reaction	no reaction	no reaction	Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^2/H^+$ then mark on)

(ii) propanal 3 peaks ignore splitting even if wrong

propanone 1 peak

(b) **X** is CH_3CH_2COOH or propanoic acid if both name and formula given, both must be correct, but

1

3

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation

 $K_2Cr_2O_7/H^+$ or other oxidation methods as above allow $Cr_2O_7^{2-}H^+$ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

2	1		

Step 2	reduction or nucleophilic addition	reduction or nucleophilic addition	reduction or hydrogenation	1
	NaBH₄	LiAlH₄	H ₂	1
	in (m)ethanol or water or ether or dry	ether or dry	Ni / Pt etc	1

Step 3	esterification or (nucleophilic) addition-elimination or condensation	1	
	(conc) H₂SO₄ or HCl	1	
	warm (allow without acid reagent if ${f X}$ and ${f Y}$ given as reagents)	1	
	or reflux or heat	1	
			[15]

M6.	(a)	(i)	An appropriate alkene; CH ₃ CH ₂ CHCH ₂ or (CH ₃) ₂ CCH ₂	1
Isomer 1				

	Isomer 2	1					
	Position isomerism	1					
	Mechanism						
	electrophilic attack and electron shift to Br (Unless $H^{\scriptscriptstyle +}$ used)	1					
	carbocation	1					
	reaction with carbocation [Allow mechanism marks for the alkene CH₃CHCHCH₃] [Allow one mark if mechanism for minor product given]	1					
(ii)	An appropriate carbonyl; CH₃CH₂CHO	1					
	Mechanism nucleophilic attack and electron shift to O						
	anion intermediate						
	reaction with anion [Allow mechanism marks for the carbonyl (CH₃)₂CO]						
	Isomer 1	1					
	Isomer 2	1					
	Optical isomerism <i>NB Isomer structures must be tetrahedral</i> <i>NB Penalise "stick" structures once in part (a)</i>	1					
(b)	QoL Large charge on carbonyl carbon atom due to bonding to O and Cl	1					
	Nucleophiles have electron pairs which can be donated						
	Equation Species						

Balanced