
Mark schemes

(a) One circled C atom only – The C attached to $CH_3/C=O/H$ and NH

[7]

Q3.

(a)	2-hydroxyhexanenitrile	1
(b)	(Plane) polarised light	1

1

1

1

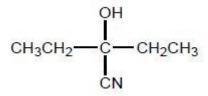
1

Enantiomers would <u>rotate</u> light in opposite directions not different alone

(c) planar carbonyl group or

 $\geq = 0$

planar

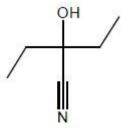

Not planar molecule, not planar bond, not planar C=O

Attack from either side

With equal probability

OR produces equal amounts (of the two isomers/enantiomers)

(d)

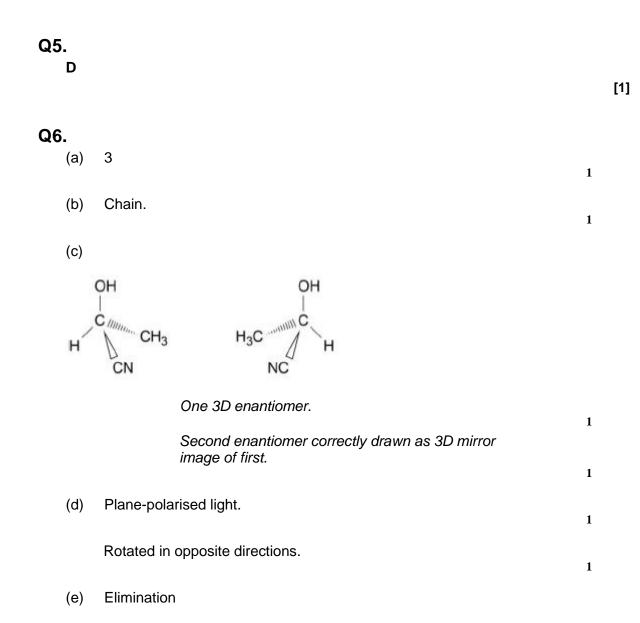

Does not contain a chiral centre

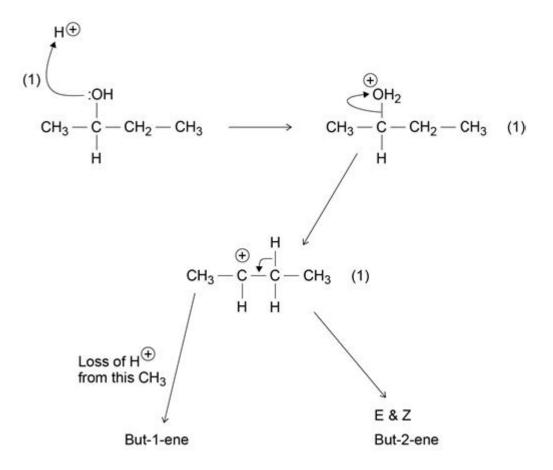
OR does not contain C attached to 4 different groups

OR contains two identical/ethyl groups

OR symmetrical (product)

Allow C₂H₅ or skeletal




M2 dependent on correct M1 (No structure = 0) If pentan-3-one drawn then allow symmetrical ketone for M2

[8]

Q4. D

[1]

Extended response question

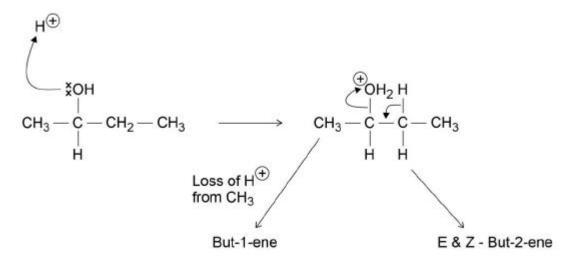
M1

Mechanism (3 marks)

- M2 arrow from lone pair on O to H+
- M3 1^{st} intermediate **and** arrow from C–O+H₂ bond to O (with loss of H₂O)
- M4 2nd intermediate (carbocation) **and** arrow from C–H bond to C–C (with loss of H⁺) to form C=C

M3 and M4 can be scored in one step (see alternative mechanism below).

If carbocation incorrect then answer cannot score maximum marks.


Explanation of formation of 3 alkenes

- M5 loss of H⁺ from C (in carbocation) adjacent to ⁺C (to which –OH was attached)
- M6 From ${}^{1}C-{}^{2}C+{}^{3}C-{}^{4}C$ leads to but-1-ene
- M7 From ${}^{1}C-{}^{2}C+{}^{3}C-{}^{4}C$ leads to but-2-ene

M8 But-2-ene formed as mixture of E-Z isomers

Alternative mechanism

[14]

Q7.

D

[1]

Q8.

(a) (i) <u>Nucleophilic addition</u>

Any extra loses the mark Allow minor spelling errors e.g. nucleophyllic

(ii)

M1 for arrow from lone pair on oxygen in ethanol to C of C=O (or to space half way between O and C) M2 for arrow from C=O bond to oxygen in ethanal Do not allow M2 as first step without nucleophilic attack, but can allow M1 for attack on C+ produced + rather than δ + on C=O loses M2 Ignore any further steps Mark independently

1 1

1

AQA Chemistry A-Level - Optical Isomerism MS

(b) (i) Equal mixture of enantiomers/optical isomers
OWTTE
1
(ii) (Non-superimposable) mirror images
Ignore rotates light in opposite directions
Ignore stereoisomers
1
(c) (i) Ethanal 0.33
1
Ethanol 4.16
Allow 4.2 for ethanol
1
$$K_{c} = \frac{[aceta1][H_{2}O]}{[CH_{3}CHO][CH_{3}CH_{2}OH]^{2}}$$
 or with names
(i) $\frac{(0.37/0.31)(0.65/0.31)}{(0.58/0.31)(3.76/0.31)^{2}}$ OR $\frac{(0.37)(0.65)}{(0.58)(3.76)^{2}} \times 0.31$
Ignore slips in acetal structure or formula $C_{c}H_{1}O_{2}$
If K_{c} wrong, allow M4 only for units conseq to their
 K_{c}
If volume omitted (gives 2.93 × 10²) may only score
M1 and M4
If volume used = 310 cm³ allow M2 then award M3
for 9.08 – 9.23 only and M4 for mol⁻¹ cm³ only
Treat error in converting 310 cm³ to dm³ as AE
9.1 × 10⁻³
Allow range 9.08 × 10⁻³ – 9.23 × 10⁻³
M3
mol⁻¹dm³
Not moles 'dm³
M4
 $H_{2}C-CH_{2}$
(d) $H_{3}C-H$
1
[12]

Page 7 of 7