Ω1	Two	isomeric	ketones	are shown	helow
WΙ	. I WO	isomenic	Retories	are shown	DEIOW

$$\begin{array}{cccc} CH_3-C-CH_2CH_2CH_3 & CH_3CH_2-C-CH_2CH_3 \\ & & & & & \\ O & & & & \\ \mathbf{O} & & & & \\ \mathbf{O} & & & & \\ \mathbf{R} & & & & \\ \end{array}$$

(a)	Name and outline a mechanism for the reaction of compound ${\bf Q}$ with HCN and name the product formed.	
	Name of mechanism	
	Mechanism	
	Name of product	
		(6)
(b)	Some students were asked to suggest methods to distinguish between isomers Q	

(b) Some students were asked to suggest methods to distinguish between isomers **Q** and **R**.

One student suggested testing the optical activity of the products formed when ${\bf Q}$ and ${\bf R}$ were reacted separately with HCN.

By considering the optical activity of these products formed from ${\bf Q}$ and ${\bf R}$, explain why this method would **not** distinguish between ${\bf Q}$ and ${\bf R}$.

(Total 9 marks)

Q2 .W	/hich isom	one of the following reactions will produce an organic compound that has optical ers?	
	Α	dehydration of butan-2-ol by heating with concentrated sulphuric acid	
	В	reduction of pentan-3-one by warming with NaBH₄	
	С	addition of Br ₂ to 3-bromopropene	
	D	reduction of 2,3-dimethylpent-2-ene with H₂ in the presence of a nickel catalyst (Total 1 m	ark)
Q3. W	/hich	one of the following can exhibit both geometrical and optical isomerism?	
	Α	(CH ₃) ₂ C=CHCH(CH ₃)CH ₂ CH ₃	
	В	CH ₃ CH ₂ CH=CHCH(CH ₃)CH ₂ CH ₃	
	С	$(CH_3)_2C=C(CH_2CH_3)_2$	
	D	CH ₃ CH ₂ CH(CH ₃)CH(CH ₃)C=CH ₂ (Total 1 m	ark)
Q4. B	utano	one is reduced in a two-step reaction using NaBH₄ followed by dilute hydrochloric acid.	
	(a)	Write an overall equation for the reduction of butanone using [H] to represent the reductant.	
			(1)
	(b)	By considering the mechanism of the reaction, explain why the product has no effect on plane polarised light.	

	• • • •
	 • • •
(6)	
(0)	
(6) (Total 7 marks)	
•	

Q5. This question is about some isomers of C₅H₈O₂

(a) Compound **H** is a cyclic ester that can be prepared as shown.

On the structure of **H**, two of the carbon atoms are labelled.

Н

(i) Name and outline a mechanism for this reaction.

Use **Table C** on the Data Sheet to give the ¹³C n.m.r. δ value for the carbon atom labelled **a** and the δ value for the carbon atom labelled **b**.

(ii)	HOCH ₂ CH ₂ CH ₂ COCl can also react to form a polyester in a mechanism similar to that in part (i).
	Draw the repeating unit of the polyester and name the type of polymerisation involved.
Stat reac	e how you could distinguish between compounds J and K by a simple test-tubetion.
State the ¹	e how you could distinguish between ${f J}$ and ${f K}$ by giving the number of peaks in H n.m.r. spectrum of each compound.
CH	$H_3-C-CH_2-C-CH_3$ $CH_3-C-CH_2-CH_2-C < C < H$ C
	J K

			(5)
			(6)
(c)		of the following isomers of C ₅ H ₈ O ₂ we with the correct letter L , M , N , P or Q .	
	L is methyl 2-methylpropeno	ate.	
	M is an ester that shows E-Z	z stereoisomerism.	
	N is a carboxylic acid with a stereoisomerism.	branched carbon chain and does not show	
	P is an optically active carbo	xylic acid.	
	Q is a cyclic compound that of H n.m.r. spectrum.	contains a ketone group and has only two pe	aks in its
	,		
			(5) (Total 19 marks)
			,
••••			
Q6.VVnich	compound forms optically acti		
Α	CH ₃ CH ₂ C(CH ₃)=CHCH ₃	0	
В	CH ₃ CH ₂ C(CH ₃)=CH ₂	0	
С	CH ₃ COCH ₃	0	
D		0	
			(Total 1 mark)
		Page 6	

Q7. The ca	arbonyl compound CH₃CH₂CHO reacts very slowly with HCN	
(a)	Name and outline a mechanism for the reaction of CH₃CH₂CHO with HCN	
(α)		
	Name of mechanism	
	Mechanism	
		(5)
(b)	The reaction in part (a) produces a pair of enantiomers.	
	(i) Draw the structure of each enantiomer to show how they are related to each other.	
		(2)
	(ii) State and explain how you could distinguish between the two enantiomers.	
		(2)

(c) Give the IUPAC name of the product of the reaction in part (a).

			(1)
(d)	Give	ractice, KCN rather than HCN is added to the carbonyl compound. In that K_s for HCN = 4.0 × 10 ⁻¹⁰ mol dm ⁻³ , suggest why the reaction with HCN is slow.	
			(2)
(e)		vlic fibres are used as a substitute for wool. Acrylics are copolymers of lonitrile with other compounds.	
	Acry	lonitrile is the common name for the following compound.	
		$H_2C = CH - C \equiv N$	
	(i)	Acrylonitrile can be formed from propene.	
		Write an equation for the reaction of propene with ammonia and oxygen to form acrylonitrile and one other product.	
			(1)
	(ii)	The term copolymer is used to describe the product obtained when two or more different monomers form a polymer. Draw the repeating unit of the acrylic copolymer that contains 75% acrylonitrile monomer and 25% chloroethene monomer.	

(iii)	Name the type of polymerisation involved in part (ii)
	(4)
	(Total 15 marks)