| Ω1 | Two | isomeric | ketones | are shown | helow | |----|--------|----------|----------|-----------|-------| | WΙ | . I WO | isomenic | Retories | are shown | DEIOW | $$\begin{array}{cccc} CH_3-C-CH_2CH_2CH_3 & CH_3CH_2-C-CH_2CH_3 \\ & & & & & \\ O & & & & \\ \mathbf{O} & & & & \\ \mathbf{O} & & & & \\ \mathbf{R} & & & & \\ \end{array}$$ | (a) | Name and outline a mechanism for the reaction of compound ${\bf Q}$ with HCN and name the product formed. | | |-----|---|-----| | | Name of mechanism | | | | Mechanism | Name of product | | | | | (6) | | | | | | (b) | Some students were asked to suggest methods to distinguish between isomers Q | | (b) Some students were asked to suggest methods to distinguish between isomers **Q** and **R**. One student suggested testing the optical activity of the products formed when ${\bf Q}$ and ${\bf R}$ were reacted separately with HCN. By considering the optical activity of these products formed from ${\bf Q}$ and ${\bf R}$, explain why this method would **not** distinguish between ${\bf Q}$ and ${\bf R}$. |
 |
 |
 | |------|------|------| | | | | | | | | |
 |
 |
 | |
 |
 | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | |
 |
 |
 | |
 |
 |
 | | | | | | | | | (Total 9 marks) | Q2 .W | /hich
isom | one of the following reactions will produce an organic compound that has optical ers? | | |--------------|---------------|--|------| | | Α | dehydration of butan-2-ol by heating with concentrated sulphuric acid | | | | В | reduction of pentan-3-one by warming with NaBH₄ | | | | С | addition of Br ₂ to 3-bromopropene | | | | D | reduction of 2,3-dimethylpent-2-ene with H₂ in the presence of a nickel catalyst (Total 1 m | ark) | | Q3. W | /hich | one of the following can exhibit both geometrical and optical isomerism? | | | | Α | (CH ₃) ₂ C=CHCH(CH ₃)CH ₂ CH ₃ | | | | В | CH ₃ CH ₂ CH=CHCH(CH ₃)CH ₂ CH ₃ | | | | С | $(CH_3)_2C=C(CH_2CH_3)_2$ | | | | D | CH ₃ CH ₂ CH(CH ₃)CH(CH ₃)C=CH ₂ (Total 1 m | ark) | | | | | | | Q4. B | utano | one is reduced in a two-step reaction using NaBH₄ followed by dilute hydrochloric acid. | | | | (a) | Write an overall equation for the reduction of butanone using [H] to represent the reductant. | | | | | | (1) | | | (b) | By considering the mechanism of the reaction, explain why the product has no effect on plane polarised light. |
 | |------------------------|-----------| | | | | | | | |
 | | | | | | | | | | | | • • • • | | | | | | | | |
• • • | | | | | | | | |
 | | (6) | | | (0) | | | (6)
(Total 7 marks) | | | • | | Q5. This question is about some isomers of C₅H₈O₂ (a) Compound **H** is a cyclic ester that can be prepared as shown. On the structure of **H**, two of the carbon atoms are labelled. Н (i) Name and outline a mechanism for this reaction. Use **Table C** on the Data Sheet to give the ¹³C n.m.r. δ value for the carbon atom labelled **a** and the δ value for the carbon atom labelled **b**. | (ii) | HOCH ₂ CH ₂ CH ₂ COCl can also react to form a polyester in a mechanism similar to that in part (i). | |----------------|---| | | Draw the repeating unit of the polyester and name the type of polymerisation involved. | Stat
reac | e how you could distinguish between compounds J and K by a simple test-tubetion. | | State
the ¹ | e how you could distinguish between ${f J}$ and ${f K}$ by giving the number of peaks in H n.m.r. spectrum of each compound. | | CH | $H_3-C-CH_2-C-CH_3$ $CH_3-C-CH_2-CH_2-C < C < H$ C | | | J K | | | | | | | | | | | (5) | |-----------|---|---|-------------------------| | | | | (6) | | | | | | | (c) | | of the following isomers of C ₅ H ₈ O ₂ we with the correct letter L , M , N , P or Q . | | | | L is methyl 2-methylpropeno | ate. | | | | M is an ester that shows E-Z | z stereoisomerism. | | | | N is a carboxylic acid with a stereoisomerism. | branched carbon chain and does not show | | | | P is an optically active carbo | xylic acid. | | | | Q is a cyclic compound that of H n.m.r. spectrum. | contains a ketone group and has only two pe | aks in its | | | , | (5)
(Total 19 marks) | | | | | , | | | | | | | •••• | | | | | Q6.VVnich | compound forms optically acti | | | | Α | CH ₃ CH ₂ C(CH ₃)=CHCH ₃ | 0 | | | В | CH ₃ CH ₂ C(CH ₃)=CH ₂ | 0 | | | С | CH ₃ COCH ₃ | 0 | | | D | | 0 | | | | | | (Total 1 mark) | | | | Page 6 | | | Q7. The ca | arbonyl compound CH₃CH₂CHO reacts very slowly with HCN | | |-------------------|---|-----| | (a) | Name and outline a mechanism for the reaction of CH₃CH₂CHO with HCN | | | (α) | | | | | Name of mechanism | | | | Mechanism | (5) | | | | | | (b) | The reaction in part (a) produces a pair of enantiomers. | | | | (i) Draw the structure of each enantiomer to show how they are related to each other. | (2) | | | | | | | | | | | (ii) State and explain how you could distinguish between the two enantiomers. | (2) | | | | | (c) Give the IUPAC name of the product of the reaction in part (a). | | | | (1) | |-----|------|---|-----| | (d) | Give | ractice, KCN rather than HCN is added to the carbonyl compound. In that K_s for HCN = 4.0 × 10 ⁻¹⁰ mol dm ⁻³ , suggest why the reaction with HCN is slow. | | | | | | (2) | | | | | | | (e) | | vlic fibres are used as a substitute for wool. Acrylics are copolymers of lonitrile with other compounds. | | | | Acry | lonitrile is the common name for the following compound. | | | | | $H_2C = CH - C \equiv N$ | | | | (i) | Acrylonitrile can be formed from propene. | | | | | Write an equation for the reaction of propene with ammonia and oxygen to form acrylonitrile and one other product. | | | | | | (1) | | | (ii) | The term copolymer is used to describe the product obtained when two or more different monomers form a polymer. Draw the repeating unit of the acrylic copolymer that contains 75% acrylonitrile monomer and 25% chloroethene monomer. | | | | | | | | (iii) | Name the type of polymerisation involved in part (ii) | |-------|---| | | | | | (4) | | | (Total 15 marks) |