CHAPTER 16 ORGANIC ANALYSIS (a) The infra-red spectrum of compound A, C₃H₆O₂, is shown below. Identify the functional groups which cause the absorptions labelled **X** and **Y**. Using this information draw the structures of the three possible structural isomers for A. (5 marks) 3 possible **structural isomers**: 2 Consider the following scheme of reactions. State the type of structural isomerism shown by propanal and propanone. | (D) | propanone. | | | | | | | |-----|--|--|--|--|--|--|--| | | | ify a suitable reagent for the test.
what you would observe with propanal and with propanone. | | | | | | | | Test reagent | | | | | | | | | Obse | rvation with propanal | | | | | | | | Obse | rvation with propanone | | | | | | | (c) | their | the structural feature of propanal and propanone which can be identified from infrared spectra by absorptions at approximately 1720 cm ⁻¹ . may find it helpful to refer to Table 1 on the Data Sheet. | | | | | | | | | (1 mark) | | | | | | | (d) | The reaction of chlorine with propane is similar to the reaction of chlorine with methane. | | | | | | | | (d) | (i) | Name the type of mechanism in the reaction of chlorine with methane. | | | | | | | (d) | (ii) | Write an equation for each of the following steps in the mechanism for the reaction of chlorine with propane to form l-chloropropane ($\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl}$). Initiation step | | | | | | | | | First propagation step | | | | | | | | | Second propagation step | | | | | | | | | A termination step to form a molecule with the empirical formula C_3H_7 | | | | | | | | | (4 marks) | | | | | | (e) High resolution mass spectrometry of a sample of propane indicated that it was contaminated with traces of carbon dioxide. Use the data in the table to show how precise $M_{\rm r}$ values can be used to prove that the sample contains both of these gases. | Atom | Precise relative atomic mass | |-----------------|------------------------------| | ¹² C | 12.00000 | | ¹ H | 1.00794 | | ¹⁶ O | 15.99491 | | | | | | | | | |
 | | | | | | | | | |-----------|-------|-------------------|---|---|-------|---|-------|---|-------|---|---|-------|-------|---|-------------------|--------| • • • • • | ••••• | • • • • • • • • • | | | | • | |
• | ••••• | • | • | ••••• | ••••• | • | • • • • • • • • • | ••••• | •••• | ••••• | ••••• | • | • | ••••• | • | ••••• |
••••• | ••••• | ••••• | ••••• | ••••• | ••••• | (2 m | auko | | | | | | | | | | | | | | | | | (2 m | ur KS) | 3 The table below shows the structures of three isomers with the molecular formula $C_5 H_{10} O$ | Isomer 1 H ₃ C H C=C CH(OH)CH ₃ | (<i>E</i>)-pent-3-en-2-ol | |---|-----------------------------| | CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ C=O | pentanal | | CH ₃ CH ₂ CH ₂ C=0 H ₃ C | | | (b) | State the type of structural isomerism shown by these three isomers. | | | | | | | | |----------|---|--|--|--|--|--|--|--| | | (1 mark) | | | | | | | | | (c) | The compound (Z)-pent-3-en-2-ol is a stereoisomer of (E)-pent-3-en-2-ol. | | | | | | | | | (c) (i) | Draw the structure of (Z)-pent-3-en-2-ol. | (c) (ii) | Identify the feature of the double bond in (E) -pent-3-en-2-ol and that in (Z) -pent-3-en-2-ol that causes these two compounds to be stereoisomers. | | | | | | | | | | (1 mark) | | | | | | | | | (d) | A chemical test can be used to distinguish between separate samples of Isomer 2 and Isomer 3. | | | | | | | | | | Identify a suitable reagent for the test. State what you would observe with Isomer 2 and with Isomer 3. | | | | | | | | | | Test reagent | | | | | | | | | | Observation with Isomer 2 | Observation with Isomer 3 | | | | | | | | (e) The following is the infrared spectrum of one of the isomers 1, 2 or 3. | (e) (I) | You may find it helpful to refer to Table 1 on the Data Sheet. | |----------|--| | | (1 mark) | | (e) (ii) | Identify two features of the infrared spectrum that support your deduction. In each case, identify the functional group responsible. | | | Feature 1 and functional group | | | | | | | | | | | | Feature 2 and functional group | | | | | | | | | (2 marks) |