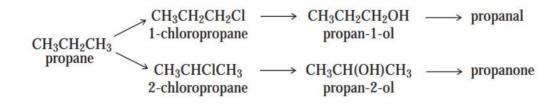

CHAPTER 16 ORGANIC ANALYSIS


(a) The infra-red spectrum of compound A, C₃H₆O₂, is shown below.

Identify the functional groups which cause the absorptions labelled **X** and **Y**. Using this information draw the structures of the three possible structural isomers for A. (5 marks)

3 possible **structural isomers**:

2 Consider the following scheme of reactions.

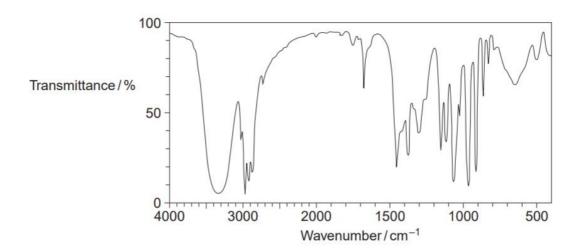
State the type of structural isomerism shown by propanal and propanone.

(D)	propanone.						
		ify a suitable reagent for the test. what you would observe with propanal and with propanone.					
	Test reagent						
	Obse	rvation with propanal					
	Obse	rvation with propanone					
(c)	their	the structural feature of propanal and propanone which can be identified from infrared spectra by absorptions at approximately 1720 cm ⁻¹ . may find it helpful to refer to Table 1 on the Data Sheet.					
		(1 mark)					
(d)	The reaction of chlorine with propane is similar to the reaction of chlorine with methane.						
(d)	(i)	Name the type of mechanism in the reaction of chlorine with methane.					
(d)	(ii)	Write an equation for each of the following steps in the mechanism for the reaction of chlorine with propane to form l-chloropropane ($\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl}$). Initiation step					
		First propagation step					
		Second propagation step					
		A termination step to form a molecule with the empirical formula C_3H_7					
		(4 marks)					

(e) High resolution mass spectrometry of a sample of propane indicated that it was contaminated with traces of carbon dioxide.

Use the data in the table to show how precise $M_{\rm r}$ values can be used to prove that the sample contains both of these gases.

Atom	Precise relative atomic mass
¹² C	12.00000
¹ H	1.00794
¹⁶ O	15.99491


• • • • •	•••••	• • • • • • • • •				• • • • • • • • • • • • • • • • • • • •		 •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	 •••••	•••••	•••••	•••••	•••••	•••••			
															(2 m	auko
															(2 m	ur KS)

3 The table below shows the structures of three isomers with the molecular formula $C_5 H_{10} O$

Isomer 1 H ₃ C H C=C CH(OH)CH ₃	(<i>E</i>)-pent-3-en-2-ol
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ C=O	pentanal
CH ₃ CH ₂ CH ₂ C=0 H ₃ C	

(b)	State the type of structural isomerism shown by these three isomers.							
	(1 mark)							
(c)	The compound (Z)-pent-3-en-2-ol is a stereoisomer of (E)-pent-3-en-2-ol.							
(c) (i)	Draw the structure of (Z)-pent-3-en-2-ol.							
(c) (ii)	Identify the feature of the double bond in (E) -pent-3-en-2-ol and that in (Z) -pent-3-en-2-ol that causes these two compounds to be stereoisomers.							
	(1 mark)							
(d)	A chemical test can be used to distinguish between separate samples of Isomer 2 and Isomer 3.							
	Identify a suitable reagent for the test. State what you would observe with Isomer 2 and with Isomer 3.							
	Test reagent							
	Observation with Isomer 2							
	Observation with Isomer 3							

(e) The following is the infrared spectrum of one of the isomers 1, 2 or 3.

(e) (I)	You may find it helpful to refer to Table 1 on the Data Sheet.
	(1 mark)
(e) (ii)	Identify two features of the infrared spectrum that support your deduction. In each case, identify the functional group responsible.
	Feature 1 and functional group
	Feature 2 and functional group
	(2 marks)