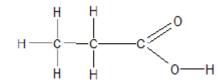
M1.(a) (i) C₄H₁₀

 $M_{\rm r}$ = 4(12.00000) + 10(1.00794)

= <u>58.07940</u> or <u>58.0794</u> or <u>58.079</u> or <u>58.08</u>

and <u>58.1</u>


Working is essential, leading to the final value of 58.1 which must be stated in addition to one of the four numbers underlined

1

1

 (ii) <u>By definition</u> OR The <u>standard</u> / <u>reference</u> (value / isotope) Reference to ¹²C alone is not enough

(b)

All bonds and atoms must be drawn Give credit for the displayed formula for the anion

(c) (i) $H_2C = CHCH_2OH$ Any correct representation including correct use of "sticks". Require the double bond to be shown

1

1

1

(ii) <u>Addition</u> (polymerisation) ONLY this answer

(iii) M1 <u>C = C</u> (in range) <u>1620 to 1680</u> (cm⁻¹)

M2	<u>О – Н</u> (in range) <u>3230 to 3550</u> (ст ⁻¹)
	Award one mark for two correct ranges but a failure to draw out the C = C or O–H bonds

2

1

1

2

1

- (d) (i) CH₃COCH₃ Any correct representation including correct use of "sticks"
 - (ii) C 1 [9]

M2. (a)
$$2Ca_{5}F(PO_{4})_{3} + 9SiO_{2} + 15C \longrightarrow 9CaSiO_{3} + CaF_{2} + 15CO + 6P$$

(b) **M1** (P₄ =) **0**

M2 (H₃PO₄ =) **(+) 5** Accept Roman numeral V for **M2**

(c) H_2SO_4

Both numbers required

*M*_r = 2(1.00794) + 32.06550 + 4(15.99491) = **98.06102 or 98.0610 or 98.061 or 98.06 or 98.1** *Calculations not required*

<u>and</u>

H₃PO₄

(d) (i) A substance that <u>speeds up</u> a reaction OR <u>alters / increases the rate</u> of a reaction **AND** is <u>chemically unchanged at the end / not used up</u>.

Both ideas needed

Ignore reference to activation energy or alternative route.

1

2

1

1

(ii) The <u>addition of water</u> (QoL) to a molecule / compound QoL- for the underlined words

(iii) M1 CH₃CH=CH₂ + H₂O \longrightarrow CH₃CH(OH)CH₃

(C₃H₀)

For **M1** insist on correct structure for the alcohol but credit correct equations using either C_3H_6 or double bond not given.

M2 propan-2-ol

M3.(a) H OR hydrogen OR H[•] Ignore brackets ignore dot penalise + or – charge

> (b) CH₃ **OR** methyl **OR** CH₃ **OR** CH₃ Ignore brackets ignore dot penalise + or – charge

(c) Either order

 C_2H_5 **OR** ethyl **OR** CH_3CH_2 **OR** C_2H_5 Ignore brackets ignore dot penalise + or – charge

1

1

CHO OR HCO OR COH OR H-C=O

(d) I A

II	С	1
111	D	1
IV	В	1

[8]

1

M4. (a) The molecular ion is

• The <u>molecule</u> with one/an electron knocked off/lost Ignore the highest or biggest m/z <u>peak</u>

OR

• The molecule with a (single) positive charge

OR

• the <u>ion</u> with/it has the largest/highest/biggest <u>m/z</u> (value/ratio) Ignore "the peak to the right"

OR

• the <u>ion</u> with/it has an m/z equal to the *M*, *Ignore "compound"*

1

1

(b) (i) <u>2(14.00307) + 15.99491</u> = <u>44.00105</u> <u>A sum is needed</u> to show this

(ii) <u>Propane/C₃H₈ and carbon dioxide/CO₂ (and N₂O) or they or both the gases/molecules or all three gases/molecules have an (imprecise) *M*_r of 44.0 (OR 44)
</u>

OR

they have the same *M*, or molecular mass (to one d.p) *This could be shown in a calculation of relative masses for propane <u>and</u> carbon dioxide*

(iii) By definition

OR

The <u>standard/reference</u> (value/isotope) Ignore "element" Ignore "atom"

(c) (i) M1 (could be scored by a correct mathematical expression)

 $\underline{\Delta H} = \underline{\Sigma \Delta H}_{\text{products}} - \underline{\Sigma \Delta H}_{\text{reactants}}$

OR a correct cycle of balanced equations

M1 and M2 can be scored with correct moles as follows $\Delta H + 2(-46) = +82 + 3(-286)$

 $\Delta H - 92 = -776$

Δ*H* = 92 – 776 OR 92 + 82 – 858

М3

 $\Delta H = -684$ (kJ mol⁻¹) (This is worth 3 marks)

Award 1 mark ONLY for + 684

Full marks for correct answer. Ignore units. Deduct one mark for an arithmetic error.

3

1

1

(ii) The value is quoted at a pressure of <u>100 kPa OR 1 bar</u> or <u>10⁵ Pa</u>

OR

<u>All reactants and products</u> are in their <u>standard states/their normal</u> <u>states at 100 kPa or 1 bar</u>

Ignore 1 atmosphere/101 kPa Ignore "constant pressure"

[8]

1