M1.(a) (i)	Green Ignore shades of green.	1
		(ii)	Excess acidified potassium dichromate(VI)	1
			Reflux (for some time)	1
			 In the diagram credit should be given for a vertical condenser Lose M3 and M4 for a distillation apparatus. 	1
			 an apparatus which would clearly work Do not allow this mark for a flask drawn on its own. Penalise diagrams where the apparatus is sealed. 	1
		(iii)	Distillation	1
			Immediately (the reagents are mixed)	1
	(b)	Ke	ep away from naked flames Allow heat with water-bath or heating mantle. If a list is given ignore eye protection, otherwise lose this mark.	1

(c)	(i)	Tollens' or Fehling's reagents Incorrect reagent(s) loses both marks. Accept mis-spellings if meaning is clear.	1
		Silver mirror / red ppt. formed Accept 'blue to red' but not 'red' alone.	1
	(ii)	Sodium carbonate (solution) / Group II metal Allow indicator solutions with appropriate colours. Accept any named carbonate or hydrogen carbonate.	1
		Effervescence / evolves a gas Accept 'fizzes'.	1
(d)	Proj	panoic acid If this mark is lost allow one mark if there is reference to stronger intermolecular forces in the named compound. Lose M1 and M3.	1
	Contains hydrogen bonding		
	Some comparison with other compounds explaining that the intermolecular forces are stronger in propanoic acid		

M2.D

М3.		(a)	(i) $C_6H_{12}O_6 \rightarrow 2C_2H_6OH + 2CO_2;$ (penalise C_2H_6O once only in this question)	l
		(ii)	<u>Concentrated</u> H ₂ SO ₄ OR <u>concentrated</u> H ₃ PO ₄ OR Al ₂ O ₃ ; (penalise aqueous or dilute as a contradiction)	Ĺ
			$C_2H_5OH \rightarrow C_2H_4 + H_2O \text{ OR } C_2H_5OH \rightarrow H_2C = CH_2 + H_2O;$ (penalise CH_2CH_2 and CH_2-CH_2 and CH_2 : CH_2 for ethene) 1	L
	(b)	Nic	kel OR Ni OR platinum OR Pt OR palladium OR Pd; 1	L
		Hyd	lrogen OR H₂; 1	l
	(c)	(i)	C ₁₈ H ₃₄ O ₂ Only;	L
			C₅H₁₂O Only; (empirical formula is not consequential on molecular formula) 1	L
		(ii)	(An unsaturated compound) contains (at least) <u>one double bond</u> OR	
			Contains C=C; (must be a positive statement)	L
		(iii)	M1: Bromine water	
			OR	
			Br₂(aq) OR	
			Bromine	
			OR	
			Br ₂ ;	

M1: decolourised or goes colourless

OR

from brown/red/orange/yellow to colourless;

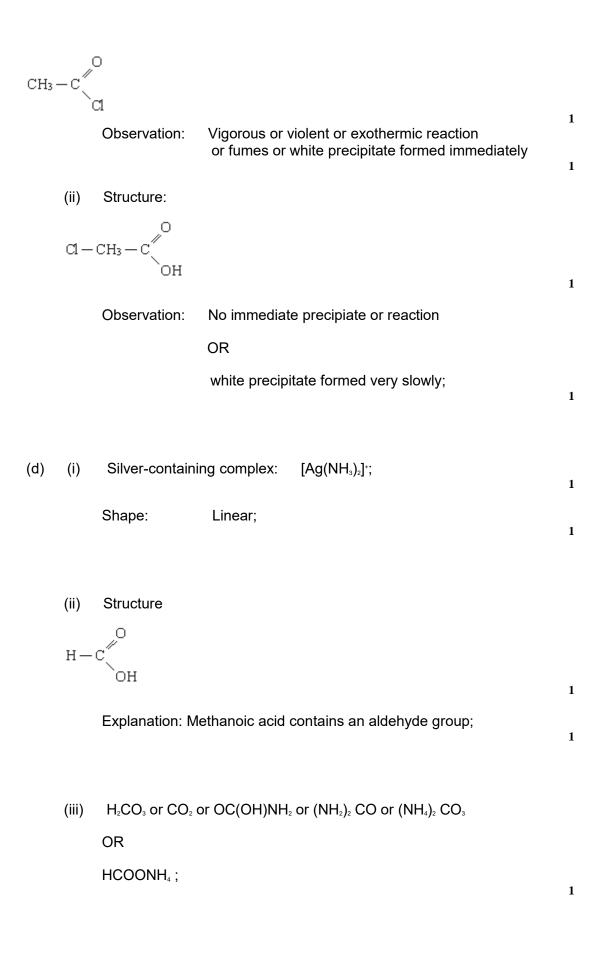
(Must be "colourless" not "clear" for M2) (chemical error if no reagent or wrong reagent, loses both marks) (credit KMnO ₄ for M1, (purple) to colourless for M2 (if acidified) OR (purple) to brown/brown precipitate (if alkaline or unspecified) (No credit for hydrogen or iodine as reagents) 1

1

M4. (a) (i)

	The addition of AgNO₃		/ed by ntrated	the addition of NH₃(aq)
Observation with NaBr(aq)			Precipitate dissolves (1)	
Observation with Nal(aq)			Precipitate insoluble or no change (1)	

(ii) Ag F is soluble;


(b)	(i)	identity:	$[Ag(S_2O_3)_2]^{3-};$	
				1

- (ii) equation: Agl + $2S_2O_3^2 \rightarrow [Ag(S_2O_3)_2]^3 + 1^-$ 1
- (iii) use: in photography or as a fixer;

1

5

(c) (i) Structure

[17]

M5. (a) <u>Functional group</u> (isomerism)

(b)

M1 Tollens' (reagent) (Credit ammoniacal silver nitrate OR a description of making Tollens') (Ignore either AgNO ₃ or [Ag(NH ₃) ₂ *] or "the silver mirror test" on their own, but mark M2 and M3)	M1 Fehling's (solution) or Benedict's solution (<i>Ignore Cu</i> ²⁺ (<i>aq</i>) or <i>CuSO₄</i> on their own, but mark on to M2 and M3)
M2 <u>silver mirror</u> OR	M2 <u>Red solid/precipitate</u> (<i>Credit orange or brown <u>solid</u></i>)
<u>black solid/precipitate</u> (NOT silver precipitate)	
M3 (stays) colourless or no change or no reaction	M3 (stays) blue or no change or no reaction
reagent, penalising M1 No reagent, C Allow the follo M1 (acidified) M2 (turns) gre M3 (stays) ora OR M1 (acidified) M2 (turns) col	owing alternatives potassium dichromate(VI) (solution) een ange/no change potassium manganate(VII) (solution) lourless orple/no change ng (happens)"

3

1

- (c) (Both have) C=O **OR** a carbonyl (group)
- (d) (i) (Free-) <u>radical substitution</u> ONLY Penalise "(free) radical mechanism"

1

1

(ii) Initiation

 $Cl_2 \rightarrow 2Cl^{\bullet}$

Penalise absence of dot once only.

First propagation

 $\begin{array}{l} \mathsf{Cl} \bullet + \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_3 \rightarrow \bullet\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 + \mathsf{HCl} \\ \mathsf{OR}\ \mathsf{C}_3\mathsf{H}_8 \end{array}$

Penalise incorrect position of dot on propyl radical once only. Penalise C_3H_7 • once only

Second propagation

 $\mathsf{Cl}_{\scriptscriptstyle 2} + {}^\bullet\mathsf{CH}_{\scriptscriptstyle 2}\mathsf{CH}_{\scriptscriptstyle 3} \to \mathsf{CH}_{\scriptscriptstyle 3}\mathsf{CH}_{\scriptscriptstyle 2}\mathsf{CH}_{\scriptscriptstyle 2}\mathsf{CI} + \mathsf{Cl}{}^\bullet$

OR

 $C_{3}H_{7}CI$

Accept $CH_3CH_2CH_2$ • with the radical dot above/below/to the side of <u>the last carbon</u>.

Termination (must make C₆H₁₄)

2 •CH₂CH₂CH₃ \rightarrow C₆H₁₄ or CH₃CH₂CH₂CH₂CH₂CH₂CH₃

Use of the secondary free radical might gain 3 of the four marks

4

2

(e) $M_r = \underline{44.06352}$ (for propane) $M_r = \underline{43.98982}$ (for carbon dioxide) *Mark independently*

M1 a correct value for <u>both</u> of these <u>*M*, values</u>.

M2 a statement or idea that two peaks appear (in the mass spectrum)

OR

two molecular ions are seen (in the mass spectrum).

[12]