Q1.Consider the following scheme of reactions.

CH ₃ Cl	ane	
ргор	\sim CH ₃ CHClCH ₃ \longrightarrow CH ₃ CH(OH)CH ₃ \longrightarrow propand 2-chloropropane propan-2-ol	one
(a)	State the type of structural isomerism shown by propanal and propanone.	
		(1)
(b)	A chemical test can be used to distinguish between separate samples of propanal and propanone.	
	Identify a suitable reagent for the test. State what you would observe with propanal and with propanone.	
	Test reagent	
	Observation with propanal	
	Observation with propanone	(3)
(c)	State the structural feature of propanal and propanone which can be identified from their infrared spectra by absorptions at approximately 1720 cm ⁻¹ .	
		(1)
(d)	The reaction of chlorine with propane is similar to the reaction of chlorine with methane.	
	(i) Name the type of mechanism in the reaction of chlorine with methane.	
		(1)

Seco	nd propagation step	
A terr	mination step to form a	a molecule with the empirical formula C₃H₂
e the dat	ed with traces of carbota in the table to show contains both of these Atom	γ how precise $M_{ au}$ values can be used to prove
the dat	ta in the table to show contains both of these	on dioxide. η how precise M_r values can be used to prove gases.
the dat	ta in the table to show contains both of these	on dioxide. Thow precise M , values can be used to prove gases. Precise relative atomic mass

Write an equation for each of the following steps in the mechanism for the

Q2. There are **seven** isomeric carbonyl compounds with the molecular formula $C_5H_{10}O$. The structures and names of some of these isomers are given below.

|--|

(ii)

CH ₃ CH ₂ CH ₂ CH ₂ -C=O H	pentanal
$ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{2} - \text{CH} - \text{C} = 0 \\ \text{H} \end{array} $	2-methybutanal
CH_3 $CH_3 - C - C = O$ $CH_3 H$	2, 2-dimethypropanal
CH ₃ CH ₂ —C—CH ₂ CH ₃	
	pentan-2-one

- (a) (i) Complete the table.
 - (ii) **Two** other isomeric carbonyl compounds with the molecular formula C₅H₁₀O are not shown in the table. One is an aldehyde and one is a ketone. Draw the structure of each.

isomeric aldehyde

isomeric ketone

(4)

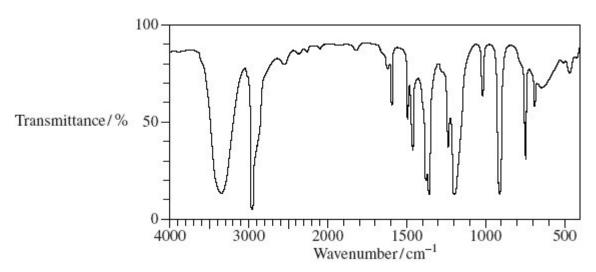
- (b) Pentanal, CH₂CH₂CH₂CHO, can be oxidised to a carboxylic acid.
 - (i) Write an equation for this reaction. Use [O] to represent the oxidising agent.

		(ii)	Name the carboxylic acid formed in this reaction.	(2)
((c)	Pent	anal can be formed by the oxidation of an alcohol.	
		(i)	Identify this alcohol.	
		(ii)	State the class to which this alcohol belongs.	
				(2) (Total 8 marks)
			gation of the chemical properties of alcohols, a mixture of ethanol and a dichromate(VI) is heated in a conical flask in a water bath.	acidified
((a)	Expl	ain why a water bath is used to heat the mixture.	
				(1)
((b)	Des	cribe the colour change which would be observed.	
				(1)
				(Total 2 marks)

Q4. There are four isomeric alcohols with the molecular formula C	Q4.	There are f	four isomeric	alcohols with the	e molecular formula	C ₄ H ₁₀ O
---	-----	-------------	---------------	-------------------	---------------------	----------------------------------

(a) Two of these are butan-l-ol (CH₃CH₂CH₂CH₂OH) and butan-2-ol. The other two isomers are alcohol **X** and alcohol **Y**.

Draw the displayed formula for butan-2-ol.


Alcohol ${\bf X}$ does not react with acidified potassium dichromate(VI) solution. Give the structure of alcohol ${\bf X}$.

Name the fourth isomer, alcohol Y.

 	 	 •••••	 	

(3)

(b) The infrared spectrum of one of these isomeric alcohols is given below.

Page 6

	alcohol. You may find it helpful to refer to Table 1 on the Data Sheet.	
	Explain how infrared spectroscopy can be used to identify this isomeric alcohol.	
		(3)
(c)	British scientists have used bacteria to ferment glucose and produce the biofuel butan-1-ol.	
	Write an equation for the fermentation of glucose ($C_6H_{12}O_6$) to form butan-1-ol, carbon dioxide and water only.	
	State one condition necessary to ensure the complete combustion of a fuel in air.	
	Write an equation for the complete combustion of butan-1-ol and state why it can be described as a <i>biofuel</i> .	
		(4)
(d)	Butan-1-ol reacts with acidified potassium dichromate(VI) solution to produce two organic compounds.	
	State the class of alcohols to which butan-1-ol belongs.	
	Draw the displayed formula for both of the organic products.	

Identify ${\bf one}$ feature of the infrared spectrum which supports the fact that this is an

			e the type of reaction that occurs and the change in colour of the potassium comate(VI) solution.	
			(Total 15 m	(5) arks)
Q5.	(struc mole	Alcohols can be classed as primary, secondary or tertiary. Draw possible stures for a primary, a secondary and a tertiary alcohol which have the scular formula C ₄ H ₈ O.	
			romate in acid solution?	(4)
	(b)	it is ι	ain what is meant by the fingerprint region of an infra-red spectrum. State how used to confirm the identity of organic molecules such as the primary, secondary tertiary alcohols of molecular formula C_4H_8O .	(2)
	(c)	struc	n of the parts below concerns a different pair of isomers. Deduce one possible stural formula for each of the species A to F . Use, where appropriate, the table fra-red absorption data given on the data sheet.	
		(i)	A and B have the molecular formula C_3H_8O . A has a broad absorption band at 3300 cm ⁻¹ in its infra-red spectrum, but B does not.	
		(ii)	C and D have the molecular formula C₅H₁₀. C has a weak absorption band at 1650 cm⁻¹ in its infra-red spectrum, but D does not.	
		(iii)	E and F have the molecular formula C₃H₀O and both have strong absorption	

bands at about 1700 cm⁻¹ in their infra-red spectra. **E** reacts with Tollens' reagent but **F** does not.

(6) (Total 12 marks)