Q1.Consider the following scheme of reactions. | CH ₃ Cl | ane | | |--------------------|--|-----| | ргор | \sim CH ₃ CHClCH ₃ \longrightarrow CH ₃ CH(OH)CH ₃ \longrightarrow propand 2-chloropropane propan-2-ol | one | | (a) | State the type of structural isomerism shown by propanal and propanone. | | | | | (1) | | (b) | A chemical test can be used to distinguish between separate samples of propanal and propanone. | | | | Identify a suitable reagent for the test.
State what you would observe with propanal and with propanone. | | | | Test reagent | | | | Observation with propanal | | | | Observation with propanone | (3) | | (c) | State the structural feature of propanal and propanone which can be identified from their infrared spectra by absorptions at approximately 1720 cm ⁻¹ . | | | | | (1) | | (d) | The reaction of chlorine with propane is similar to the reaction of chlorine with methane. | | | | (i) Name the type of mechanism in the reaction of chlorine with methane. | | | | | (1) | | Seco | nd propagation step | | |-----------|--|--| | A terr | mination step to form a | a molecule with the empirical formula C₃H₂ | | | | | | e the dat | ed with traces of carbota in the table to show contains both of these Atom | γ how precise $M_{ au}$ values can be used to prove | | the dat | ta in the table to show contains both of these | on dioxide. η how precise M_r values can be used to prove gases. | | the dat | ta in the table to show contains both of these | on dioxide. Thow precise M , values can be used to prove gases. Precise relative atomic mass | Write an equation for each of the following steps in the mechanism for the **Q2.** There are **seven** isomeric carbonyl compounds with the molecular formula $C_5H_{10}O$. The structures and names of some of these isomers are given below. |--| (ii) | CH ₃ CH ₂ CH ₂ CH ₂ -C=O
H | pentanal | |---|----------------------| | $ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{2} - \text{CH} - \text{C} = 0 \\ \text{H} \end{array} $ | 2-methybutanal | | CH_3 $CH_3 - C - C = O$ $CH_3 H$ | 2, 2-dimethypropanal | | CH ₃ CH ₂ —C—CH ₂ CH ₃ | | | | pentan-2-one | - (a) (i) Complete the table. - (ii) **Two** other isomeric carbonyl compounds with the molecular formula C₅H₁₀O are not shown in the table. One is an aldehyde and one is a ketone. Draw the structure of each. isomeric aldehyde isomeric ketone (4) - (b) Pentanal, CH₂CH₂CH₂CHO, can be oxidised to a carboxylic acid. - (i) Write an equation for this reaction. Use [O] to represent the oxidising agent. | | | (ii) | Name the carboxylic acid formed in this reaction. | (2) | |---|-----|------|--|------------------------| | (| (c) | Pent | anal can be formed by the oxidation of an alcohol. | | | | | (i) | Identify this alcohol. | | | | | (ii) | State the class to which this alcohol belongs. | | | | | | | (2)
(Total 8 marks) | | | | | | | | | | | | | | | | | gation of the chemical properties of alcohols, a mixture of ethanol and a dichromate(VI) is heated in a conical flask in a water bath. | acidified | | (| (a) | Expl | ain why a water bath is used to heat the mixture. | | | | | | | (1) | | | | | | | | (| (b) | Des | cribe the colour change which would be observed. | | | | | | | (1) | | | | | | (Total 2 marks) | | Q4. There are four isomeric alcohols with the molecular formula C | Q4. | There are f | four isomeric | alcohols with the | e molecular formula | C ₄ H ₁₀ O | |---|-----|-------------|---------------|-------------------|---------------------|----------------------------------| |---|-----|-------------|---------------|-------------------|---------------------|----------------------------------| (a) Two of these are butan-l-ol (CH₃CH₂CH₂CH₂OH) and butan-2-ol. The other two isomers are alcohol **X** and alcohol **Y**. Draw the displayed formula for butan-2-ol. Alcohol ${\bf X}$ does not react with acidified potassium dichromate(VI) solution. Give the structure of alcohol ${\bf X}$. Name the fourth isomer, alcohol Y. |
 |
 |
 |
 | | |------|------|-----------|------|--| | | | | | | | | | | | | |
 |
 |
 |
 | | | | | | | | |
 |
 |
••••• |
 | | | | | | | | |
 |
 |
 |
 | | (3) (b) The infrared spectrum of one of these isomeric alcohols is given below. Page 6 | | alcohol. You may find it helpful to refer to Table 1 on the Data Sheet. | | |-----|---|-----| | | Explain how infrared spectroscopy can be used to identify this isomeric alcohol. | (3) | | | | | | (c) | British scientists have used bacteria to ferment glucose and produce the biofuel butan-1-ol. | | | | Write an equation for the fermentation of glucose ($C_6H_{12}O_6$) to form butan-1-ol, carbon dioxide and water only. | | | | State one condition necessary to ensure the complete combustion of a fuel in air. | | | | Write an equation for the complete combustion of butan-1-ol and state why it can be described as a <i>biofuel</i> . | (4) | | | | | | (d) | Butan-1-ol reacts with acidified potassium dichromate(VI) solution to produce two organic compounds. | | | | State the class of alcohols to which butan-1-ol belongs. | | | | Draw the displayed formula for both of the organic products. | | | | | | Identify ${\bf one}$ feature of the infrared spectrum which supports the fact that this is an | | | | e the type of reaction that occurs and the change in colour of the potassium comate(VI) solution. | | |-----|-----|---------------|---|--------------| (Total 15 m | (5)
arks) | Q5. | (| struc
mole | Alcohols can be classed as primary, secondary or tertiary. Draw possible stures for a primary, a secondary and a tertiary alcohol which have the scular formula C ₄ H ₈ O. | | | | | | romate in acid solution? | (4) | | | (b) | it is ι | ain what is meant by the fingerprint region of an infra-red spectrum. State how used to confirm the identity of organic molecules such as the primary, secondary tertiary alcohols of molecular formula C_4H_8O . | (2) | | | (c) | struc | n of the parts below concerns a different pair of isomers. Deduce one possible stural formula for each of the species A to F . Use, where appropriate, the table fra-red absorption data given on the data sheet. | | | | | (i) | A and B have the molecular formula C_3H_8O . A has a broad absorption band at 3300 cm ⁻¹ in its infra-red spectrum, but B does not. | | | | | (ii) | C and D have the molecular formula C₅H₁₀. C has a weak absorption band at 1650 cm⁻¹ in its infra-red spectrum, but D does not. | | | | | (iii) | E and F have the molecular formula C₃H₀O and both have strong absorption | | bands at about 1700 cm⁻¹ in their infra-red spectra. **E** reacts with Tollens' reagent but **F** does not. (6) (Total 12 marks)