	cess.				
	ethar	nol > ethar	nal > ethar	noic acid	
(a)	In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux.				
	Describe what happen in this case, for comple			efluxed and why it	is necessary
(b)	Write a half-equation f	or the overall o	xidation of etha	nol into ethanoic	acid.
(c)	The boiling points of the	յе organic com	oounds in a rea	ction mixture are	shown in the
(c)	The boiling points of the following table.	ıe organic comp	oounds in a rea	ction mixture are	shown in the
(c)		ne organic comp ethanol	oounds in a rea ethanal	ethanoic acid	shown in the
(c)	following table.			1	shown in the
(c)	Compound Boiling point / °C	ethanol 78	ethanal 21	ethanoic acid	
(c)	Compound Boiling point / °C Use these data to desc	ethanol 78 cribe how you w	ethanal 21 vould obtain a s	ethanoic acid 118 sample of ethanal	from a
(c)	Compound Boiling point / °C	ethanol 78 cribe how you woompounds. Industrial	ethanal 21 vould obtain a sclude in your aru would minimis	ethanoic acid 118 sample of ethanal aswer a descriptions the loss of ethanal as the loss of ethan as the loss of ethanal as the loss of ethan as the loss o	from a n of the anal. Your

		(5)
(d)	Use your knowledge of structure and bonding to explain why it is possible to separate ethanal in this way.	
	ooparato othana in thio way.	
		(2)
		(-/
(e)	A student obtained a sample of a liquid using the apparatus in part (c) .	
	Describe how the student could use chemical tests to confirm that the liquid	
	contained ethanal and did not contain ethanoic acid.	
		/e\
	(та	(5) otal 16 marks)

Q2. The table below shows the structures of three isomers with the molecular formula $C_{\mbox{\tiny 5}}H_{\mbox{\tiny 10}}O$

Isomer 1 H ₃ C H C=C CH(OH)CH ₃	(<i>E</i>)-pent-3-en-2-ol
CH ₃ CH ₂	pentanal
CH ₃ CH ₂ CH ₂ C=O H ₃ C	

(a) Complete the table by naming Isomer 3.

(1)

(b) State the type of structural isomerism shown by these three isomers.

(1)

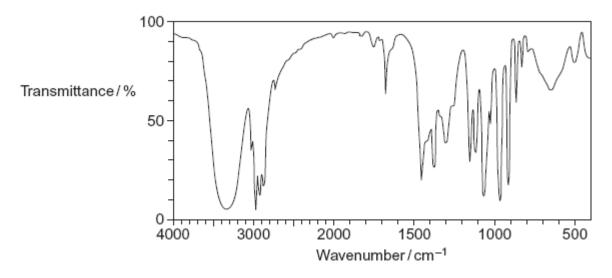
- (c) The compound (*Z*)-pent-3-en-2-ol is a stereoisomer of (*E*)-pent-3-en-2-ol.
 - (i) Draw the structure of (*Z*)-pent-3-en-2-ol.

(ii)	Identify the feature of the double bond in (E)-pent-3-en-2-ol and that in
	(Z)-pent-3-en-2-ol that causes these two compounds to be stereoisomers.

.....(1)

(d) A chemical test can be used to distinguish between separate samples of Isomer 2 and Isomer 3.

Identify a suitable reagent for the test.


State what you would observe with Isomer 2 and with Isomer 3.

Observation with Isomer 2.

Observation with Isomer 3.

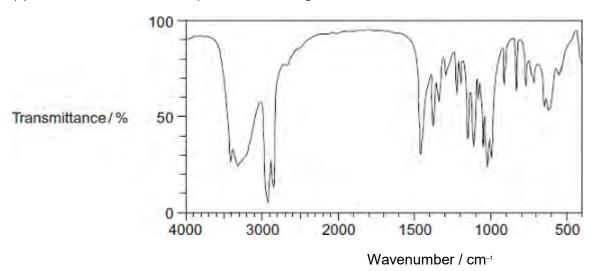
(3)

(e) The following is the infrared spectrum of one of the isomers 1, 2 or 3.

(i) Deduce which of the isomers (1, 2 or 3) would give this infrared spectrum. You may find it helpful to refer to **Table 1** on the Data Sheet.

(1)

	(ii)	Identify two features of the infrared spectrum that support your deduction. In each case, identify the functional group responsible.
		Feature 1 and functional group
		Feature 2 and functional group
		(2) (Total 10 marks)
		ls can be oxidised by an acidified solution of potassium dichromate(VI). can be oxidised by Tollens' reagent or by Fehling's solution.
Outlin	ne a s	n pure liquid A contains only a single alcohol. imple procedure to allow you to determine whether A is a primary, a secondary alcohol.


Q4.Glucose is an organic molecule. Glucose can exist in different forms in aqueous solution.

(a) In aqueous solution, some glucose molecules have the following structure.

(i) Deduce the empirical formula of glucose.

.....(1)

(ii) Consider the infrared spectrum of solid glucose.

State why it is possible to suggest that in the solid state very few molecules have the structure shown.

You may find it helpful to refer to **Table 1** on the Data Sheet.

.....

(1)

(b) In the absence of oxygen, an aqueous solution of glucose can be fermented to produce ethanol for use in alcoholic drinks.

		e an equation for this fermentation reaction. e two other essential conditions for the production of ethanol in this fermentation.	
	Equ	ation	
	Con	dition 1	
	Con	dition 2	(3)
(c)	•	ethanol present in the breath of a drinker can be detected by using a athalyser.	
	The	ethanol is converted into ethanoic acid. The breathalyser has negative and tive electrodes. A current is measured and displayed in terms of alcohol content.	
	The	overall redox equation is as follows	
		$CH_3CH_2OH(I) + O_2(g) \longrightarrow CH_3COOH(I) + H_2O(I)$	
	(i)	Draw the displayed formula for ethanoic acid.	
			(1)
	(ii)	Deduce a half-equation for the reduction of atmospheric oxygen to water in acidic solution at one electrode of the breathalyser.	
			(1)
			()
	(iii)	Deduce a half-equation for the oxidation of ethanol in water to ethanoic acid at the other electrode of the breathalyser.	
			(1)

	(iv)	The earliest breathalysers used laboratory chemicals to oxidise the ethanol to ethanoic acid. Detection was by a colour change.	
		Identify a reagent or combination of reagents that you would use in the laboratory to oxidise ethanol to ethanoic acid. State the colour change that you would expect to see.	
		Reagent or combination of reagents	
		Colour change	(2)
(d)	ethar	fermentation of glucose from crops is the main method for the production of nol. The product is called bioethanol. The European Union has declared that hanol is carbon-neutral.	
	(i)	State the meaning of the term carbon-neutral.	
		(Extra space)	
	(ii)	Other than carbon-neutrality, state the main advantage of the use of glucose from crops as the raw material for the production of ethanol.	(1)
			(1)
	(iii)	Give one disadvantage of the use of crops for the production of ethanol.	
		(Total 13 ma	(1) (rks

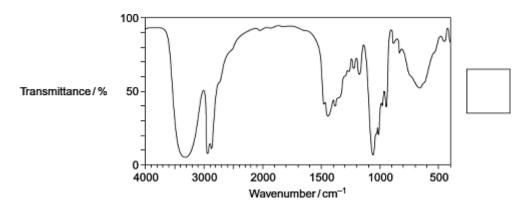
Q5.The reaction of butane-1,4-diol with butanedioic acid produces the polymer PBS used in biodegradable packaging and disposable cutlery. Butanedioic acid is produced by two different processes.				
F	Proc	ess 1		
•	•	Aqueous sodium hydroxide reacts with 1,4-dibromobutane to make butane-1,4-diol.		
•	•	Butane-1,4-diol is oxidised to butanedioic acid.		
F	Process 2			
•	 Glucose reacts with carbon dioxide in the presence of microorganisms to produce butanedioic acid directly. 			
•		The carbon dioxide used in this process is obtained from a local factory that produces bioethanol.		
((a)	Deduce one safety reason and one environmental reason why Process 2 is preferred to Process 1 .		

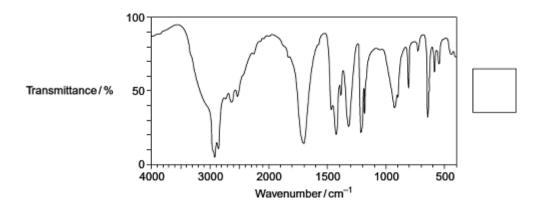
(b) (i) Name and outline a mechanism for the following reaction that occurs in **Process 1**.

(Extra space)

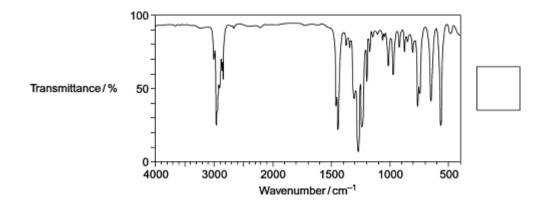
(2)

.....


(ii) The infrared spectra shown are those of three compounds.


Compound **A** 1,4-dibromobutaneCompound **B** butane-1,4-diol Compound **C** butanedioic acid

(3)


Identify the compound responsible for each spectrum by writing the correct letter, **A**, **B** or **C**, in the box next to each spectrum.

You may find it helpful to refer to **Table 1** on the Data Sheet.

Page 12

(3)

(4)

(c) In the production of bioethanol, glucose (C₆H₁₂O₆) is converted into a dilute aqueous solution of ethanol and carbon dioxide.

Give the name of this process and state **three** essential conditions necessary to produce a good yield of ethanol.

(Extra space)

(d) State the class of alcohols to which the diol butane-1,4-diol belongs.

Identify a suitable reagent or combination of reagents for the conversion of butane-1,4-diol into butanedioic acid (HOOCCH₂CH₂COOH).

Write an equation for this oxidation reaction using [O] to represent the oxidising agent.

.....

(Extra space)	
(LANG Space)	
	(3)
(To	tal 15 marks)