Q1.In each of the following questions, you should draw the structure of the compound in the space provided.	
(a) Draw the structure of the alkene that would form 1,2-dibromo-3-methylbutane when reacted with bromine.	(1)
(b) Draw the structure of the alcohol with molecular formula C₄H₁₀O that is resistant to oxidation by acidified potassium dichromate(VI).	(1)
(c) Draw the structure of the alkene that has a peak, due to its molecular ion, at $m/z = 42$ in its mass spectrum.	(1)
(d) Draw the structure of the organic product with M _r = 73, made from the reaction between 2-bromobutane and ammonia. (Total 4 ma)	(1)
(Total 4 IIIa	ai N.3

Identify a reagent or combination of reagents that the student could use to distinguish between these alcohols. State what would be observed for each alcohol.	
between these alcohols. Otate what would be observed for each alcohol.	
Reagent(s)	
Observation with 2-methylpropan-2-ol	
Observation with butan-2-ol	
(Total 3	marks)
Q3. The following pairs of compounds can be distinguished by simple test-tube reactions.	
For each pair of compounds, give a reagent (or combination of reagents) that, when added separately to each compound, could be used to distinguish between them. State what is observed in each case.	
(a) Butan-2-ol and 2-methylpropan-2-ol	
(a) Butan-2-ol and 2-methylpropan-2-ol Reagent	
Reagent	
Reagent	
Reagent	
Reagent Observation with butan-2-ol	
Reagent Observation with butan-2-ol	
Reagent Observation with butan-2-ol	(3)
Reagent Observation with butan-2-ol	(3)
Reagent Observation with butan-2-ol	(3)

	Observation with propane	
	Observation with propene	
		(3)
(c)	Aqueous silver nitrate and aqueous sodium nitrate	
	Reagent	
	Observation with aqueous silver nitrate	
	Observation with aqueous sodium nitrate	
		(3)
(4)	Aqueous magnesium chloride and aqueous barium chloride	
(d)	Reagent	
	Observation with aqueous magnesium chloride	
	oboorvation was aquoodo magnoolam omonac	
	Observation with aqueous barium chloride	
	·	
		(3) Total 12 marks)

Q4. (a)		none can be formed when glucose comes into contact with bacteria in the ence of air.	
	(i)	Balance the following equation for this reaction of glucose to form propanone, carbon dioxide and water.	
		\dots $C_6H_{12}O_6 \longrightarrow \dots CH_3COCH_3 + \dots CO_2 + \dots H_2O$	(1)
	(ii)	Deduce the role of the bacteria in this reaction.	
			(1)
(b)	Prop	panone is also formed by the oxidation of propan-2-ol.	
	(i)	Write an equation for this reaction using [O] to represent the oxidising agent.	
	/::\	Chata the place of clock alote which manner 2 all belows	(1)
	(ii)	State the class of alcohols to which propan-2-ol belongs.	
			(1)
(c)	was calor The	udent determined a value for the enthalpy change when a sample of propanone burned. The heat produced was used to warm some water in a copper rimeter. student found that the temperature of 150 g of water increased by 8.0 °C when × 10 ⁻³ mol of pure propanone was burned in air.	
	wher	the student's results to calculate a value, in kJ mol ⁻¹ , for the enthalpy change n one mole of propanone is burned. e specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹)	

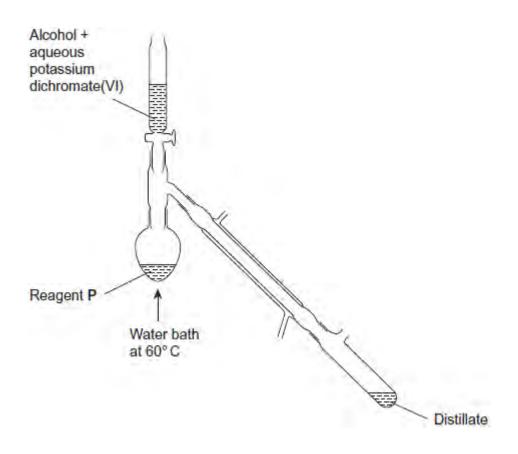
panone is burned.	С-Н	с-с	с-о	О-Н	C=O	O=O	
lean bond	412	348					

(3)

(1)	from the value calculated in part (e).	L
	Reason 1	
	Reason 2	
	(Total	(2) 15 marks)
	ol A (CH ₃) ₂ CHCH(OH)CH ₃ undergoes reactions separately with acidified potassium	
	romate(VI) and with concentrated sulfuric acid.	
(a)	Deduce the IUPAC name for alcohol A .	
		(1)
(b)	Draw the structure of the organic product, B , formed when A is oxidised in the reaction with acidified potassium dichromate(VI).	
		(1)
(c)	Two isomeric alkenes, ${\bf C}$ and ${\bf D}$, are formed when ${\bf A}$ is dehydrated in the reaction with concentrated sulfuric acid.	1
	Name the mechanism for this dehydration reaction.	
		(1)

(d)	Draw the structure of each	ch isomer.	
	Isomer C	Isomer D	
			(2)
(e)	Name the type of structu	ral isomerism shown by C and D .	
			(1)
(f)	List alcohol A , product B	and isomer C in order of increasing boiling point.	
			(1)
(g)	Draw the structure of the dichromate(VI).	isomer of A that is not oxidised by acidified potassium	
			(1)
(h)	Draw the structure of the by reaction with concentration	isomer of A that cannot be dehydrated to form an alkene ated sulfuric acid.	

		(1)
(Total	9	marks)


N E	Which	statement	about	ethanal	ie	correct
ωo	. 7771111111	Statement	about	emanai	15	correct

- A It reacts with Tollens' reagent to form silver.
- B It has a higher boiling point than ethanol.
- C Its empirical and molecular formulas are different.
- **D** It belongs to a homologous series with general formula C_nH_{2n+1}O

(Total 1 mark)

Q7.This question concerns the oxidation of a primary alcohol.

The experiment was carried out using the distillation apparatus shown in the diagram. The oxidation product was distilled off as soon as it was formed.

(a)	Suggest the identity of reagent P .	(1)
(b)	State the chemical change that causes the solution in the flask to appear green at the end of the reaction.	
		(1)
(c)	Give one reason why using a water bath is better than direct heating with a Bunsen burner.	
		(1)

(d) Suggest a reagent that could be used to confirm the presence of an aldehyde in the

	(2) (Total 5 marks)
Observation	(0)
Reagent	
distillate. State the observation you would expect to make if an aldehyde were prese	nt.