Q1.Compound J, known as leaf alcohol, has the structural formula CH ₃ CH ₂ CH=CHCH ₂ CH ₂ OH and is produced in small quantities by many green plants. The <i>E</i> isomer of J is responsible for the smell of freshly cut grass.			
	(a)	Give the structure of the E isomer of J .	
	(b)	Give the skeletal formula of the organic product formed when J is dehydrated using concentrated sulfuric acid.	
	(c)	Another structural isomer of J is shown below.	
		CH ₃ CH ₂ CH ₂ OH	
		CH ₃ H	
		Explain how the Cahn-Ingold-Prelog (CIP) priority rules can be used to deduce the full IUPAC name of this compound.	

(1)

(1)

(d) The effect of gentle heat on maleic acid is shown below.

A student predicted that the yield of this reaction would be greater than 80%.

In an experiment, 10.0 g of maleic acid were heated and 6.53 g of organic product were obtained.

Is the student correct? Justify your answer with a calculation using these data.

•
(2)
(Total 10 marks)

Q2. A possible synthesis of phenylethene (*styrene*) is outlined below.

(a) In Reaction 1, ethanoyl chloride and aluminium chloride are used to form a reactive species which then reacts with benzene.

		Write an equation to show the formation of the reactive species. Name and outline the mechanism by which this reactive species reacts with benzene.		
		(6)		
	(b)	NaBH₄ is a possible reagent for Reaction 2. Name and outline the mechanism for the reaction with NaBH₄ in Reaction 2. Name the product of Reaction 2. (6)		
	(c)	Name the type of reaction involved in Reaction 3 and give a reagent for the reaction.		
		(2) (Total 14 marks)		
Q3. T	Q3. The reaction of butane-1,4-diol with butanedioic acid produces the polymer PBS used in biodegradable packaging and disposable cutlery. Butanedioic acid is produced by two different processes.			
	Process 1			
	•	Aqueous sodium hydroxide reacts with 1,4-dibromobutane to make butane-1,4-diol.		
	•	Butane-1,4-diol is oxidised to butanedioic acid.		
	Proc	ess 2		
	•	Glucose reacts with carbon dioxide in the presence of microorganisms to produce butanedioic acid directly.		
	•	The carbon dioxide used in this process is obtained from a local factory that produces bioethanol.		
	(a)	Deduce one safety reason and one environmental reason why Process 2 is preferred to Process 1 .		

	(Ext	ra space)	
			(2)
(b)	(i)	Name and outline a mechanism for the following reaction that occurs in Process 1 .	
BrCH₂CH₂ Br		H₂ + NaOH BrCH₂CH₂CH₂CH₂ + NaBr OH	
			(3)
	(ii)	The infrared spectra shown are those of three compounds.	
		Compound A 1,4-dibromobutaneCompound B butane-1,4-diol Compound C butanedioic acid	
		Identify the compound responsible for each spectrum by writing the correct letter, A , B or C , in the box next to each spectrum. You may find it helpful to refer to Table 1 on the Data Sheet.	

Page 5

(3)

(c) In the production of bioethanol, glucose (C₆H₁₂O₆) is converted into a dilute aqueous solution of ethanol and carbon dioxide.

Give the name of this process and state **three** essential conditions necessary to produce a good yield of ethanol.

	(Extra space)	
		(4)
		(4)
(d)	State the class of alcohols to which the diol butane-1,4-diol belongs.	
	Identify a suitable reagent or combination of reagents for the conversion of butane-1,4-diol into butanedioic acid (HOOCCH ₂ CH ₂ COOH).	
	Write an equation for this oxidation reaction using [O] to represent the oxidising agent.	
	(Extra space)	
	(Tota	(3) Il 15 marks)

- **Q4.**The following instructions are from an experimental procedure for the preparation of cyclohexene from cyclohexanol and concentrated phosphoric acid. Read these instructions and answer the questions that follow.
 - Place 25 cm³ of cyclohexanol into a round-bottomed flask with some porous pot to act as anti-bumping granules. Add 10 cm³ of concentrated phosphoric acid carefully while shaking the flask. Cool the flask under the tap if it gets too hot. Make sure the reagents are thoroughly mixed.
 - 2 Set up an apparatus for simple distillation using this flask.
 - Warm the flask, gently at first, for about 15 minutes. Then increase the heating so that cyclohexene begins to distil over. Collect the fraction that distils below 95 °C.

(a)	State the purpose of the anti-bumping granules.
(b)	Name the part of the distillation apparatus where cyclohexene vapour is changed back into a liquid.
	Draw a simple diagram of this part of the apparatus.
	Name
	Diagram

(2) (Total 3 marks)

(1)

(a)	Deduce the IUPAC name for alcohol A .
(b)	Draw the structure of the organic product, B , formed when A is oxidised in the reaction with acidified potassium dichromate(VI).
(c)	Two isomeric alkenes, C and D , are formed when A is dehydrated in the reaction
	with concentrated sulfuric acid. Name the mechanism for this dehydration reaction.
(d)	Draw the structure of each isomer.

(2)

(e)	Name the type of structural isomerism shown by C and D .	
		(1)
(f)	List alcohol A , product B and isomer C in order of increasing boiling point.	(1)
<i>(</i>)		(-,
(g)	Draw the structure of the isomer of A that is not oxidised by acidified potassium dichromate(VI).	
		(1)
(h)	Draw the structure of the isomer of A that cannot be dehydrated to form an alkene	
	by reaction with concentrated sulfuric acid.	
	(Total 9 ma	(1) rks)