Q1.	Carbon monoxide and hydrogen are used in the manufacture of methanol. An equilibrium is established according to the following equation.									
		CO(g) +	Cu 2H₂(g)	catalyst			Δ <i>H</i> = −9l k.	J mol ⁻¹	
	(a)	Give	two	features c	of a react	ion at equili	brium.			
		Featu	ıre 1							
		Featu	ıre 2							
										(2
	(b)	Explain Explai			ease in t	emperature	causes a de	ecrease in the	e equilibrium	yield
		•••••								(2
	(c)	(i)	Stat	te what is	meant by	y the term <i>c</i>	atalvst			
	(-)	(-)					-			
										(1
		(ii)		e the effectived temp			er catalyst c	on the position	n of this equ	ilibrium
										(1
	(4)	Two	moth	ode ere u	sod to sr	roduce carb	on monovida	from noture	Lago Equati	ions for
	(d)			methods			on monoxide	e from natura	i yas. Equali	10115 101

		Meth	00 1 $CH_4 + H_2O \rightarrow 2CO + 3H_2$	
		Meth	od 2 $CH_4 + CO_2 \rightarrow 2CO + 2H_2$	
			manufacture of methanol from these sources of carbon monoxide has been ribed as carbon neutral.	
		(i)		
				(1
		(ii)	Show how combining the equations from these two methods can lead to the 1:2 mol ratio of carbon monoxide to hydrogen required for this synthesis of methanol.	
			(Total 8 mar	(1 rks
Q2.	prod	Many l	naturally-occurring organic compounds can be converted into other useful	
	(a)		ose, $C_6H_{12}O_6$, can be fermented to make ethanol, which can then be dehydrated ake the unsaturated compound, ethane.	
		(i)	Write an equation for the fermentation of glucose to form ethanol.	
		(ii)	Identify a catalyst for the dehydration of ethanol to form ethene. Write an equation for this reaction.	

		Catalyst	
		Equation	(3)
(b)	març març	etable oils, which contain unsaturated compounds, are used to make garine. Identify a catalyst and a reagent for converting a vegetable oil into garine.	
	Rea	gent	(2)
(c)	unsa CH₃(c acid can be obtained from vegetable oils. Oleic acid is an example of an aturated compound. CH ₂),CH=CH(CH ₂),COOH acid	
	(i)	Deduce the molecular formula and the empirical formula of oleic acid. Molecular formula	
	(ii)	State what is meant by the term <i>unsaturated</i> .	
	(iii)	Identify a reagent for a simple chemical test to show that oleic acid is unsaturated. State what you would observe when oleic acid reacts with this reagent. Reagent	
		Observation with plain acid	

(5) (Total 10 marks)		
 (a) Ethanol can be manufactured by the direct hydration of ethene and by the fermentation of sugars. 	` '	Q3.
(i) State what is meant by the term <i>hydration</i> .	(i)	
	(::)	
(ii) Give one advantage and one disadvantage of manufacturing ethanol by fermentation rather than by hydration.	(11)	
Do not include energy consumption or cost.		
Advantage		
Disadvantage		
(3)		
(b) Ethanol can be oxidised to an aldehyde and to a carboxylic acid.	(b) Etha	
(i) Draw the structure of this aldehyde and of this carboxylic acid.	(i)	
Structure of aldehyde Structure of carboxylic acid		

	(ii)	Give a suitable reagent and reaction conditions for the oxidation of ethanol to form the carboxylic acid as the major product. Reagent
(c)	(i)	Draw the structure of an alcohol containing four carbon atoms which is resistant to oxidation.
	(ii)	Draw the structure of an alcohol containing four carbon atoms which can be oxidised to a ketone.

(5)

	(d)	In the presence of a catal	. 4 . 4	l ll - l	
- 1	α	In the hrecence of a catal	INCT ATRANCI	I CON NO MON	varated to ethene
١	u	III life breserice of a calar	arvot. Gurano	i cali be dell'	vuiateu to etilelle.

(i) Give a suitable catalyst for use in this reaction.

.....

(ii) Complete the mechanism for this dehydration reaction.

(5) (Total 15 marks)

(2)

Q4. Glucose can be used as a source of ethanol. Ethanol can be burned as a fuel or can be converted into ethene.

$$C_6H_{12}O_6 \rightarrow CH_3CH_2OH \rightarrow H_2C=CH_2$$
 glucose ethanol ethene

(a) Name the types of reaction illustrated by the two reactions above.

Glucose to ethanol

Ethanol to ethene

(b) (i) State what must be added to an aqueous solution of glucose so that ethanol is formed.

.....

	(ii)	Identify a suitable catalyst for the conversion of ethanol into ethene.	(2)
(c)	(i)	State the class of alcohols to which ethanol belongs.	
	(ii)	Give one advantage of using ethanol as a fuel compared with using a petroleum fraction.	
			(2)
(d)		t of the ethene used by industry is produced when ethane is heated to 900°C in absence of air. Write an equation for this reaction.	
			(1)
(e)		ne the type of polymerisation which occurs when ethene is converted into ethene).	
		(Total 8 ma	(1) irks)