Q1.Which statement about *E*-1,2-dichloroethene is correct?

- A It has the same boiling point as Z-1,2-dichloroethene.
- B It forms a polymer with the same repeating unit as *Z*-1,2-dichloroethene.
- C It has the same IR spectrum as Z-1,2-dichloroethene in the range 400–1500 cm⁻¹.
- D It has a molecular ion peak different from that of Z-1,2-dichloroethene in its mass spectrum.

(Total 1 mark)

Q2. The table below shows the structures of three isomers with the molecular formula $C_{\mbox{\tiny 5}}H_{\mbox{\tiny 10}}O$

Isomer 1	
H ₃ C H C=C CH(OH)CH ₃	(<i>E</i>)-pent-3-en-2-ol
Isomer 2	
CH₃CH₂CH₂CH₂ C=O	pentanal
Isomer 3	
CH ₃ CH ₂ CH ₂ C=O	

(a) Complete the table by naming Isomer 3.

(1)

State	e the type of structural isomerism shown by these three isomers.	(
The	compound (Z)-pent-3-en-2-ol is a stereoisomer of (E)-pent-3-en-2-ol.	
(i)	Draw the structure of (<i>Z</i>)-pent-3-en-2-ol.	
(ii)	Identify the feature of the double bond in ($\it E$)-pent-3-en-2-ol and that in ($\it Z$)-pent-3-en-2-ol that causes these two compounds to be stereoisomers.	
and I Ident	Isomer 3 . tify a suitable reagent for the test.	
Test	reagent	
Obse		
Obse		
	The (i) A ch and I Ident State Test Obse	(ii) Identify the feature of the double bond in (<i>E</i>)-pent-3-en-2-ol and that in (<i>Z</i>)-pent-3-en-2-ol that causes these two compounds to be stereoisomers. A chemical test can be used to distinguish between separate samples of Isomer 2 and Isomer 3. Identify a suitable reagent for the test. State what you would observe with Isomer 2 and with Isomer 3. Test reagent Observation with Isomer 2.

(e) The following is the infrared spectrum of one of the isomers 1, 2 or 3.

		(1)
(b)	Identify a sodium halide that does not undergo a redox reaction when added as a solid to concentrated sulfuric acid.	
		(1)
		(-)
(c)	Chlorine gas reacts with cold dilute sodium hydroxide solution to form sodium chloride and another chlorine-containing compound, X .	
	Give the formula of X .	
		(4)
		(1)
(d)	Give the formula of the substance responsible for the orange colour when chlorine gas is bubbled through an aqueous solution of sodium bromide.	
		(1)
(e)	Solid sodium iodide undergoes a redox reaction with concentrated sulfuric acid.	
	Give the formula for each of the following in this reaction.	
	Formula of the solid reduction product	
	Formula of the oxidation product	(2)
		\ - /
(f)	Draw the structure of each of the following organic compounds.	
	(i) The hydrocarbon that is a chain isomer of methylpropene, but does not exhibit E–Z stereoisomerism.	

(1)

	(ii)	The alcohol that is a position isomer of butan-2-ol.	
			(1)
	(iii)	The hydrocarbon that has a peak, due to its molecular ion, at m/z = 44 in its mass spectrum.	
			(1)
	(iv)	The bromoalkane that reacts with sodium cyanide to produce propanenitrile.	
		(Total 10 mai	(1) rks)
Q4. Whi	ich state	ment about ethene is correct?	
	A It h	nas no geometric isomers because there is free rotation ound the C=C bond.	
		eacts with HBr in a nucleophilic addition reaction.	

	C	it burns in excess oxygen to produce carbon dioxide and water.	
	D	The C=C bond is twice as strong as the C–C bond in ethane.	
		(Total 1 ma	rk)
Q5. lt	is po	ssible to convert but-1-ene into its structural isomer but-2-ene.	
	(a)	State the type of structural isomerism shown by but-1-ene and but-2-ene.	
			(1)
	(b)	The first stage in this conversion involves the reaction of hydrogen bromide with but-1-ene.	
		CH₃CH₂CH=CH₂ + HBr	
		Outline a mechanism for this reaction.	
			(4)
	(c)	The second stage is to convert 2-bromobutane into but-2-ene.	
		$CH_3CH_2CHBrCH + KOH \longrightarrow CH_3CH=CHCH_3 + KBr + H_2O$ CH_3	
		Outline a mechanism for this reaction.	

(3) (Total 8 marks)

Q6.Alkenes are useful intermediates in the synthesis of organic compounds.

(a) (i) Complete the elimination mechanism by drawing appropriate curly arrows.

HŌ:

3-bromohexane

hex-3-ene

(3)

(ii) Draw structures for the E and Z stereoisomers of hex-3-ene.

E isomer of hex-3-ene

Z isomer of hex-3-ene

(2)

(iii) State the meaning of the term *stereoisomers*.

.....

.....

(Extra space)

(b) The equation for the first reaction in the conversion of hex-3-ene into hexan-3-ol is shown below.

 $CH_3CH_2CH=CHCH_2CH_3$ + H_2SO_4 \longrightarrow $CH_3CH_2CH_2CH(OSO_2OH)CH_2CH_3$

Outline a mechanism for this reaction.

(4) (Total 11 marks)

(2)

Q7.The alkene *(E)*-but-2-enenitrile is used to make acrylic plastics. The structure of *(E)*-but-2-enenitrile is

$$H_3C = C$$

(a) (i) Draw the structure of (Z)-but-2-enenitrile.

(1)

(ii) Identify the feature of the double bond in the E and Z isomers that causes them to be stereoisomers.

.....

(1)

(b) Draw the repeating unit of the polyalkene formed by addition polymerisation of (*E*)-but-2-enenitrile.

(1)

(c) Consider the infrared spectrum of (E)-but-2-enenitrile.

Identify **two** features of the infrared spectrum that support the fact that this is the infrared spectrum for but-2-enenitrile. You may find it helpful to refer to **Table 1** on the Data Sheet.

Feature 1	
Feature 2	

(Total 5 marks)