Q1. Alkenes are useful intermediates in the synthesis of organic compounds.

(a) (i) Complete the elimination mechanism by drawing appropriate curly arrows.

HŌ:

3-bromohexane

hex-3-ene

(3)

(ii) Draw structures for the E and Z stereoisomers of hex-3-ene.

E isomer of hex-3-ene

Z isomer of hex-3-ene

(2)

(2)

(iii) State the meaning of the term stereoisomers.

.....

(Extra space)

.....

(b) The equation for the first reaction in the conversion of hex-3-ene into hexan-3-ol is shown below.

CH ₃ CH ₂ CH=CHCH ₂ CH ₃ + H ₂ SO ₄ ——Outline a mechanism for this reaction.	→ CH₃CH₂CH₂CH(OSO₂OH)CH₂CH₃
	(4) (Total 11 marks)
Q2.It is possible to convert but-1-ene into its structural isome	
(a) State the type of structural isomerism shown by	but-1-ene and but-2-ene.
	(1)

Outline a mechanism for this reaction.

(4)

(c) The second stage is to convert 2-bromobutane into but-2-ene.

$$CH_3CH_2CHBrCH + KOH \longrightarrow CH_3CH=CHCH_3 + KBr + H_2O$$
 CH_3

Outline a mechanism for this reaction.

(3) (Total 8 marks)

Q3. The alkene (Z)-3-methylpent-2-ene reacts with hydrogen bromide as shown below.

$$CH_3CH_2-C-CH_2CH_3$$

$$CH_3$$

$$CH_2CH_3$$

$$HBr$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$Major product, P
$$Minor product, Q$$$$

(a) (i) Name the major product **P**.

(1)

(ii) Name the mechanism for these reactions.

(1)

(iii) Draw the displayed formula for the minor product **Q** and state the type of structural isomerism shown by **P** and **Q**.

Displayed formula for Q

Type of structural isomerism

(iv) Draw the structure of the (E)-stereoisomer of 3-methylpent-2-ene.

(1)

(2)

(b) The infrared spectra of two compounds ${\bf R}$ and ${\bf S}$ are shown below. ${\bf R}$ and ${\bf S}$ have the molecular formula C_6H_{12} and are structural isomers of 3-methylpent-2-ene. ${\bf R}$ is an unsaturated hydrocarbon and ${\bf S}$ is a saturated hydrocarbon.

Spectrum 1

Spectrum 2

(i) Identify the infrared Spectrum 1 or 2 that represents compound R.
Use information from the infrared spectra to give **one** reason for your answer.
You may find it helpful to refer to **Table 1** on the Data Sheet.

R is represented by Spectrum

(2)

(ii) State the type of structural isomerism shown by **R** and **S**.

(1)

(iii) Name **one** possible compound which could be **S**.

(Total 9 marks)

Q4.Three different ways of producing ethanol are shown below.

(a) Reaction **1** produces a 15% aqueous solution of ethanol. It is claimed that the ethanol produced in this way is a carbon-neutral biofuel.

Write an equation for Reaction 1 and name the process.

Write an equation for the complete combustion of ethanol.

Explain why the ethanol produced by this process may not be a <i>carbon-neutral</i> biofuel.
(Extra space)

(5)

(b) Give a reagent and conditions for Reaction 2.

Name and outline a mechanism for Reaction 2.

Suggest one reason, other than safety, why this method is not used in industry to make ethanol.
(Extra space)

(6)

(c) Reaction 3 is used in industry.

(Total 15 marks)

Identify a suitable catalyst for Reaction 3.

Identify the type of reaction.

Give two conditions, in addition to the presence of a catalyst, necessary for Reaction 3 to produce a high yield of ethanol.
(F. dyn angar)
(Extra space)

Q5. Organic reaction mechanisms help chemists to understand how the reactions of organic compounds occur.

The following conversions illustrate a number of different types of reaction mechanism.

- (a) When 2-bromopentane reacts with ethanolic KOH, two structurally isomeric alkenes are formed.
 - (i) Name and outline a mechanism for the conversion of 2-bromopentane into pent-2-ene as shown below.

$$\begin{array}{ccc} & \text{ethanolic KOH} \\ \text{CH}_3\text{CH}_2\text{CHBrCH}_3 & & \text{CH}_3\text{CH}_2\text{CH}{=}\text{CHCH}_3 \end{array}$$

(ii) Draw the structure of the other structurally isomeric alkene produced when 2-bromopentane reacts with ethanolic KOH.

(1)

(b) Name and outline a mechanism for the following conversion.

$$\begin{array}{ccc} \text{CH}_3 & & \text{CH}_3 \\ \text{CH}_3 - \text{C} = \text{CH}_2 & & & \text{CH}_3 \\ & & & & \text{CH}_3 - \text{C} - \text{CH}_2 \text{Br} \\ & & & & \text{Br} \end{array}$$

1	c)	Name and outline a		£ (1	£ = 11 =	
11	וי	INIAMA ANG AHRINA A	machaniem	tor the	TOUGUMING	CONVARSION
"	<i>,</i>	Name and Juline a	mounanism	101 1110	TOHOWHING	COLIVE SICII.

$$CH_3CH_2CH_2Br \xrightarrow{\qquad \qquad NH_3 \qquad \qquad } CH_3CH_2CH_2NH_2$$

(5) (Total 15 marks)