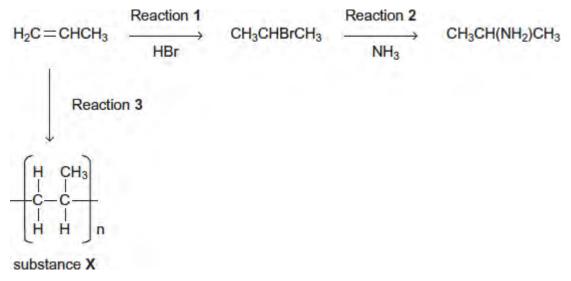
Q1.Sulfuric acid is manufactured by the Contact Process.

(a) In this process, sulfur dioxide reacts with oxygen.
The equation for the equilibrium that is established is

$$SO_2(g) + \frac{1}{2}O_2(g)$$
 \Longrightarrow $SO_3(g) \Delta H = -98 \text{ kJ mol}^{-1}$

(i)	State and explain the effect of a decrease in temperature on the equilibrium yield of SO ₃ .	
	Effect of a decrease in temperature on yield	
	Explanation	
	(Extra space)	
		(3)
(ii)	Give two features of a reaction at equilibrium.	
	Feature 1	

(2)


(b) Write an equation for the reaction of concentrated sulfuric acid with potassium bromide to form potassium hydrogensulfate and hydrogen bromide.

Feature 2

			(1)
(c)		mine is one of the products formed when concentrated sulfuric acid reacts with ogen bromide.	
		e an equation for this reaction. e the role of sulfuric acid in this reaction.	
	Equ	ation	
	Role	of sulfuric acid	(3)
			(0)
(d)		centrated sulfuric acid is used in a two-stage process to convert ethylpropene into 2-methylpropan-2-ol.	
	Stag	e 1 (CH3)2C=CH2 + H2SO4	
	Stag	e 2 (CH ₃) ₂ C(OSO ₂ OH)CH ₃ + H ₂ O \longrightarrow (CH ₃) ₂ C(OH)CH ₃ + H ₂ SO ₄	
	(i)	Name and outline a mechanism for Stage 1 of this conversion.	
		Name of mechanism	
		Mechanism	
			(5)
	(ii)	Deduce the type of reaction in Stage 2 of this conversion.	
			(1)

(iii)	State the overall role of sulfuric acid in this conversion.	
		(1) (Total 16 marks)

Q2.Consider the following reactions.

(a) Name and outline a mechanism for Reaction 1.

Name of mechanism		
Mechanism		

(5)

(b) Name and outline a mechanism for Reaction 2.

Name of mechanism

ľ	١/	Δ	\sim	h	9	n	is	m
- 1	VΙ	$\overline{}$	u		а		ıo	

		(5)
(c)	State the type of reaction in Reaction 3. Give the name of substance X .	
		(2)
(d)	The haloalkane produced in Reaction 1 can be converted back into propene in an elimination reaction using ethanolic potassium hydroxide.	
	CH₃CHBrCH₃	
	Outline a mechanism for this conversion.	

(3) (Total 15 marks) **Q3.**The following table gives the names and structures of some structural isomers with the molecular formula C₅H₁₀.

	Name of isomer	Structure
Isomer 1	pent-2-ene	CH3CH = CHCH2CH3
Isomer 2	cyclopentane	
Isomer 3	3-methylbut-1-ene	(CH ₃) ₂ CHCH = CH ₂
Isomer 4	2-methylbut-2-ene	(CH₃)₂C = CHCH₃
Isomer 5	2-methylbut-1-ene	$H_2C = C(CH_3)CH_2CH_3$

(a) Isomer 1 exists as E and Z stereoisomers.

(i)	State the meaning of the term stereoisomers .

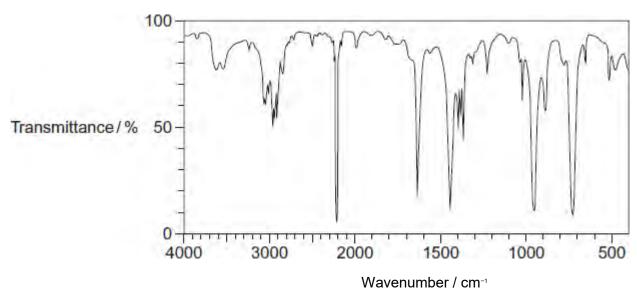
(ii) Draw the structure of the E stereoisomer of Isomer 1.

(2)

(b) A chemical test can be used to distinguish between separate samples of Isomer 1 and Isomer 2.

		tify a suitable reagent for the test. e what you would observe with Isomer 1 and with Isomer 2 .			
	Rea	gent			
	Obs	ervation with Isomer 1			
	Obs	ervation with Isomer 2			
			(3)		
(c)		Table A on the Data Sheet when answering this question. ner 3 and Isomer 4 have similar structures.			
	(i)	State the infrared absorption range that shows that Isomer 3 and Isomer 4 contain the same functional group.			
			(1)		
	(ii)	State one way that the infrared spectrum of Isomer 3 is different from the infrared spectrum of Isomer 4 .			
			(1)		
(d)	Two	alcohols are formed by the hydration of Isomer 4 .			
	Draw the displayed formula for the alcohol formed that is oxidised readily by acidified potassium dichromate(VI).				

(e)	Isomer 4 reacts with hydrogen bromide to give two structurally isomeric bromoalkanes.				
	(i)	Name and outline a mechanism for the reaction of Isomer 4 with hydrogen bromide to give 2-bromo-2-methylbutane as the major product.			
		$(CH_3)_2C = CHCH_3 + HBr \longrightarrow (CH_3)_2CBrCH_2CH_3$			
		Name of mechanism			
		Mechanism			
			(5)		
	(ii)	The minor product in this reaction mixture is 2-bromo-3-methylbutane.			
		Explain why this bromoalkane is formed as a minor product.			
			(2)		
(f)		me and outline a mechanism for the following reaction to form Isomer 5 . e the role of the hydroxide ion in this reaction.			
	(CH	$_{3})_{2}CBrCH_{2}CH_{3} + KOH \longrightarrow H_{2}C = C(CH_{3})CH_{2}CH_{3} + KBr + H_{2}O$			
	Nan	ne of mechanism			
	Med	chanism			


Role of hydroxide ion	Role	
(5) (Total 21 marks)		
he alkene <i>(E)</i> -but-2-enenitrile is used to make acrylic plastics.	I. The alkene	Q4 .T
The structure of (E)-but-2-enenitrile is		
H_3C $C = C$		
(a) (i) Draw the structure of (Z)-but-2-enenitrile.	(a) (i)	
(1)		
(ii) Identify the feature of the double bond in the E and Z isomers that causes them to be stereoisomers.	(ii)	

(1)

Draw the repeating unit of the polyalkene formed by addition polymerisation of (E)-but-2-enenitrile.

(b)

(c) Consider the infrared spectrum of (*E*)-but-2-enenitrile.

Identify **two** features of the infrared spectrum that support the fact that this is the infrared spectrum for but-2-enenitrile.

You may find it helpful to refer to **Table 1** on the Data Sheet.

Feature 1	-
	··
Feature 2	
	 (2) (Total 5 marks)

Page 10