Q1. The correct name for the alkene monomer which forms the	polymer shown below is
---	------------------------

- A 2-methyl-3-ethylpropene
- **B** 2-methylpent-2-ene
- C 2-methylpent-3-ene
- **D** 4-methylpent-2-ene

(Total 1 mark)

Q2. Which one of the following does not contain any delocalised electrons?

- **A** poly(propene)
- **B** benzene
- **C** graphite
- **D** sodium

(Total 1 mark)

(2)

- **Q3.** Propene reacts with bromine by a mechanism known as electrophilic addition.
 - (a) Explain what is meant by the term *electrophile* and by the term *addition*.

Electrophile

.....

Addition

(b) Explain why bromine, a non-polar molecule, is able to react with propene.

		(2)
(c)	Outline the mechanism for the electrophilic addition of bromine to propene. Give the name of the product formed.	
	Mechanism	
	Name of product	
		(5)
(d)	The polymerisation of propene to form poly(propene) is an important industrial process.	
	Name the type of polymerisation involved.	
		(1)
	(Total 10 ma	rks)

Q4. Glucose can be used as a source of ethanol. Ethanol can be burned as a fuel or can be converted into ethene.

$$C_{\scriptscriptstyle 6}H_{\scriptscriptstyle 12}O_{\scriptscriptstyle 6} \ \rightarrow \ CH_{\scriptscriptstyle 3}CH_{\scriptscriptstyle 2}OH \ \rightarrow \ H_{\scriptscriptstyle 2}C=CH_{\scriptscriptstyle 2}$$

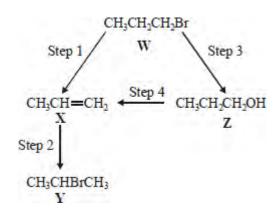
		glucose	ethanol	ethene	
(a)	Nan	ne the types of r	eaction illustr	rated by the two reactions above.	
	Gluc	cose to ethanol .			
	Etha	anol to ethene			
					(2)
(b)	(i)	is formed.		to an aqueous solution of glucose so that ethanol	
	(ii)			or the conversion of ethanol into ethene.	
					(2)
(c)	(i)	State the clas	s of alcohols	to which ethanol belongs.	
	(ii)	Give one adva		ng ethanol as a fuel compared with using a	
					(2)
(d)				stry is produced when ethane is heated to 900°C i tion for this reaction.	n
					(1)
(e)		ne the type of po (ethene).	olymerisation	which occurs when ethene is converted into	
				/Tatal 0	(1) 3 marks)
				(10tal c	, marks)

Q5. (a) Consider the following amino acid.

(i) Draw the structure of the amino acid species present in a solution at pH 12.

(ii) Draw the structure of the dipeptide formed from two molecules of this amino acid.

(iii) Protein chains are often arranged in the shape of a helix. Name the type of interaction that is responsible for holding the protein chain in this shape.


(3)

- (b) Consider the hydrocarbon **G**, (CH₃)₂C=CHCH₃, which can be polymerised.
 - (i) Name the type of polymerisation involved and draw the repeating unit of the polymer.

Type of polymerisation

(ii) Draw the structure of an isomer of G which shows geometrical isomerism. (iii) Draw the structure of an isomer of G which does not react with bromine water.	R	Repeating unit
(iii) Draw the structure of an isomer of G which does not react with bromine water.		
(iii) Draw the structure of an isomer of G which does not react with bromine water.		
(iii) Draw the structure of an isomer of G which does not react with bromine water.		
(iii) Draw the structure of an isomer of G which does not react with bromine water.		
(iii) Draw the structure of an isomer of G which does not react with bromine water.		
(iii) Draw the structure of an isomer of G which does not react with bromine water.		
water.	(ii) D	Praw the structure of an isomer of G which shows geometrical isomerism.
water.		
(A (Total 7 marks	Wa	ater.
(A (Total 7 marks)		
(4 (Total 7 marks		
(Total 7 marks		(Tatal 7 marks
		(Total 7 marks
Q6.For this question refer to the reaction scheme below.	Q6. For this question	on refer to the reaction scheme below.

Page 6

Which one of the following statements is **not** correct?

- A Reaction of **W** with sodium cyanide followed by hydrolysis of the resulting product gives propanoic acid.
- **B** Mild oxidation of **Z** produces a compound that reacts with Tollens' reagent, forming a silver mirror.
- **Z** reacts with ethanoic acid to produce the ester propyl ethanoate.
- **C W** undergoes addition polymerisation to form poly(propene).

(Total 1 mark)

Q7. Tetrafluoroethene, C_2F_4 , is obtained from chlorodifluoromethane, CHClF₂, according to the equation:

$$2CHCIF_2(g) = C_2F_4(g) + 2HCI(g)$$
 $\Delta H^0 = +128kJ \text{ mol}^{-1}$

(a) A 1.0 mol sample of CHClF₂ is placed in a container of volume 18.5 dm³ and heated.

When equilibrium is reached, the mixture contains 0.20 mol of CHCIF₂

(i) Calculate the number of moles of C₂F₄ and the number of moles of HCl present at equilibrium.

Number of moles of C₂F₄.....

Number of moles of HCl

(ii) Write an expression for K_{\circ} for the equilibrium.

		(iii)	Calculate a value for <i>K</i> ₃and give its units.	
			Calculation	
			Units	(6)
	(b)	(i)	State how the temperature should be changed at constant pressure to increase the equilibrium yield of C_2F_4	
		(ii)	State how the total pressure should be changed at constant temperature to increase the equilibrium yield of $\text{C}_{\tiny{2}}\text{F}_{\tiny{4}}$	
				(2)
	(c)		is used to manufacture the polymer polytetrafluoroethene, PTFE. Name the of polymerisation involved in the formation of PTFE.	
			(Total 9 ma	(1) rks)
Q8.		(a)	The compound H ₂ C=CHCN is used in the formation of acrylic polymers.	
		(i)	Draw the repeating unit of the polymer formed from this compound.	

(ii)	Name the type of polymerisation involved in the formation of this polymer.				
		(2)			

(b) When the dipeptide shown below is heated under acidic conditions, a single amino acid is produced.

- (i) Name this amino acid.
- (ii) Draw the structure of the amino acid species present in the acidic solution.

(2)

(c) The repeating unit of a polyester is shown below.

(i) Deduce the empirical formula of the repeating unit of this polyester.

(ii)	Draw the structure of the acid which could be used in the preparation polyester and give the name of this acid.	of this
	Structure	
	Name	
(iii)	Give one reason why the polyester is biodegradable.	
		(4) (Total 8 marks)