CHAPTER 13 HALOGENOALKANES

1	Haloalkanes are used in the synthesis of other organic compounds.			
(a)	Hot concentrated ethanolic potassium hydroxide reacts with 2-bromo-3-methylbutane to form two alkenes that are structural isomers of each other. The major product is 2-methylbut-2-ene.			
(i)	Name and outline a mechanism for the conversion of 2-bromo-3-methylbutane into 2-methylbut-2-ene according to the equation.			
	$(CH_3)_2CHCHBrCH_3 + KOH \longrightarrow (CH_3)_2C = CHCH_3 + KBr + H_2O$			
	Name of mechanism			
	Mechanism			
	(4 marks)			
(ii)	Draw the displayed formula for the other isomer that is formed.			
	(1 mark)			
(iii)	State the type of structural isomerism shown by these two alkenes.			
	(1 mark)			

- (b) A small amount of another organic compound, X, can be detected in the reaction mixture formed when hot concentrated ethanolic potassium hydroxide reacts with 2-bromo-3-methylbutane.
 Compound X has the molecular formula C₅H₁₂O and is a secondary alcohol.
 - (i) Draw the displayed formula for X.

(1 mark)

- (ii) Suggest **one** change to the reaction conditions that would increase the yield of **X**.
- (iii) State the type of mechanism for the conversion of 2-bromo-3-methylbutane into X.

 (1 mark)
- **2** (a) Consider the following reaction.

(i) Name and outline a mechanism for this reaction.

Name of mechanism

Mechanism

	(ii)	Name the haloalkane in this reaction.	
			(1 mark)
	(iii)	Identify the characteristic of the haloalkane molecule that enables it to us this type of reaction.	ndergo
			(1 mark)
	(iv)	A student predicted that the yield of this reaction would be 90%. In an experiment 10.0g of the halogenoalkane was used and 4.60g of the organized product was obtained. Is the student correct? Justify your answer with a calculation using these data.	anic
			••••••
			(1 mark)
(b)		alternative reaction can occur between this haloalkane and potassium hydr vn by the following equation.	oxide as
СН3	H - C - Br	$-CH_3$ + KOH \longrightarrow $CH_3-C=CH_2$ + KBr +	H ₂ O
	Nam	ne and outline a mechanism for this reaction.	
	Nam	ne of mechanism	
	Mec	hanism	

	(c)	Give one condition needed to favour the reaction shown in part (b) rather than that shown in part (a).		
			(1 mark)	
3	(a)	Write a balanced symbol equation for the reaction of $\mathrm{CH_3CH_2CH_2Br}$ with an hydroxide ions.	queous (2 marks)	
	.5 .55	Name the starting material and the product.	(2 marks)	
	(c)	Give the formula of the leaving group in this reaction.	(1 mark)	
	(d)	Classify the reaction as substitution, elimination or addition.	(1 mark)	
	(e)	The hydroxide ion acts as a nucleophile in this reaction. State two features of the hydroxide ion that allow it to act as a nucleophile.	(2 marks)	
	(f)	Draw the mechanism of the reaction using 'curly arrows' to show the movement of electron pairs.	(2 marks)	

(g)	How would you expect the rate of a similar reaction with CH ₃ CH ₂ CH ₂ I to compare with that of CH ₃ CH ₂ CH ₂ Br? Explain your answer.	(2 marks)
		•••••
(h)	Water molecules can act as nucleophiles in a similar reaction. How do they compare with hydroxide ions as nucleophiles? Explain your answer.	(2 marks)
(i)	What extra step has to occur in the reaction of a neutral nucleophile such as water compared with the reaction with a negatively charged ion such as the hydroxide ion?	
		(1 mark)