1	role i	an effective fire extinguisher but it is no longer used because of its toxicity and its no the depletion of the ozone layer. In the upper atmosphere, a bond in CCl₄ breaks eactive species are formed.	
((a)	Identify the condition that causes a bond in CCI₄ to break in the upper atmosphere. Deduce an equation for the formation of the reactive species.	
		Condition	
		Equation	
			(2)
((b)	One of the reactive species formed from CCl₄ acts as a catalyst in the decomposition of ozone.	
		Write two equations to show how this species acts as a catalyst.	
		Equation 1	
		Equation 2	
			(2)
((c)	A small amount of the freon CF ₃ Cl with a mass of 1.78 × 10 ⁻⁴ kg escaped from a refrigerator, into a room of volume 100 m³. Assuming that the freon is evenly distributed throughout the air in the room, calculate the number of freon molecules in a volume of 500 cm³. Give your answer to the appropriate number of significant figures.	
		The Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$.	
		Number of molecules =	
		(Total 7 ma	(3) rks)

Q2.T			ant R410A, used in air conditioners, is a mixture of two fluoroalkanes, oethane and difluoromethane.	
	(a)	(i)	The mechanism for the reaction of fluorine with either an alkane or a fluoroalkane is similar to that for the reaction of chlorine with methane.	
			Name the type of mechanism for the reaction of chlorine with methane.	
				(1)
		(ii)	Write equations for the following steps in the mechanism for the reaction of fluorine with fluoromethane (CH_3F) to form difluoromethane (CH_2F_2). Initiation step	
			First propagation step	
			Second propagation step	
			A termination step leading to the formation of 1,2-difluoroethane.	
				(4)
		(iii)	Write an overall equation for the reaction of fluorine with ethane to form pentafluoroethane (CF ₃ CHF ₂) by this mechanism.	
				(1)

(b)	The refrigerant R112A (CCI ₃ CF ₂ CI) has been banned because of concerns about ozone depletion.
	Give the IUPAC name for CCI ₃ CF ₂ CI
	(**************************************
(c)	Nitrogen monoxide (NO) catalyses the decomposition of ozone into oxygen.
	(i) Write the overall equation for this decomposition.
	(**************************************
	(ii) Use the overall equation to deduce Step 3 in the following mechanism that shows how nitrogen monoxide catalyses this decomposition.
	Step 1 $O_3 \longrightarrow O + O_2$
	Step 2 NO + $O_3 \longrightarrow NO_2 + O_2$
	Step 3(7 (Total 9 marks
Q3.Chlorin	e can be used to make chlorinated alkanes such as dichloromethane.
(a)	Write an equation for each of the following steps in the mechanism for the reaction of chloromethane (CH $_3$ CI) with chlorine to form dichloromethane (CH $_2$ CI $_2$).
	Initiation step
	First propagation step
	Second propagation step

	The	termination step that forms a compound with empirical formula CH ₂ CI.
(b)	brok	en chlorinated alkanes enter the upper atmosphere, carbon-chlorine bonds are ken. This process produces a reactive intermediate that catalyses the omposition of ozone. The overall equation for this decomposition is
		2O ₃ = 3O ₂
	(i)	Name the type of reactive intermediate that acts as a catalyst in this reaction.
	(ii)	Write two equations to show how this intermediate is involved as a catalyst in them decomposition of ozone.
		Equation 1
		Equation 2(Total 7 mar
T l		
	Bro	many uses of halogenated organic compounds despite environmental concerns. motrifluoromethane is used in fire extinguishers in aircraft. motrifluoromethane is formed when trifluoromethane reacts with bromine.
		$CHF_3 + Br_2 \longrightarrow CBrF_3 + HBr$
		reaction is a free-radical substitution reaction similar to the reaction of methane chlorine.
	(i)	Write an equation for each of the following steps in the mechanism for the reaction of CHF_3 with Br_2
		Initiation step
		First propagation step

		Second propagation step				
		A termination step				
	(ii)	State one condition necessary for the initiation of this reaction.	(4)			
			(1)			
(b)		mine-containing and chlorine-containing organic compounds may have a role in decomposition of ozone in the upper atmosphere.				
	(i)	Draw an appropriate displayed formula in the space provided to complete the following equation to show how CBrF ₃ may produce bromine atoms in the upper atmosphere.				
		CBrF₃ + Br⁺				
			(1)			
	(ii)	In the upper atmosphere, it is more likely for CBrF ₃ to produce bromine atoms than it is for CClF ₃ to produce chlorine atoms.				
		Suggest one reason for this.				
			(1)			
	(iii)	Bromine atoms have a similar role to chlorine atoms in the decomposition of ozone. The overall equation for the decomposition of ozone is				
		$2O_3 \longrightarrow 3O_2$				
		Write two equations to show how bromine atoms (Br•) act as a catalyst in the decomposition of ozone.				
		Explain how these two decomposition equations show that bromine atoms				

		Equation 1	
		Equation 2	
		Explanation	
		•	
		(Total 10	(3) marks)
Q5 .Trifluo	romet	hane (CHF₃) can be used to make the refrigerant chlorotrifluoromethane(CCIF₃)	l.
(a)		orotrifluoromethane is formed when trifluoromethane reacts with chlorine.	
(α)	Onn	CHF ₃ + Cl ₂ \longrightarrow CCIF ₃ + HCI	
		reaction is a free-radical substitution reaction similar to the reaction of methans chlorine.	;
	(i)	Write an equation for each of the following steps in the mechanism for the reaction of CHF_3 with Cl_2	
		Initiation step	
		First propagation step	
		Second propagation step	
		Termination step to form hexafluoroethane	
			(4)
	(ii)	Give one essential condition for this reaction.	
	• •		
			(1)

(b)	In some refrigeration systems, CHF $_{\scriptscriptstyle 3}$ has replaced CCIF $_{\scriptscriptstyle 3}$ because of concerns about ozone depletion.				
	(i)	Identify the species formed from CCIF ₃ that is responsible for the catalytic decomposition of ozone in the upper atmosphere.			
			(1)		
	(ii)	Write an overall equation to represent the decomposition of ozone into oxygen.	куgen.		
		(Total 7 ma	(1) arks)		

In some refrigeration systems, CHF₃ has replaced CCIF₃ because of concerns about