| 1. (a) T | | drocarbon but-1-ene (C_4H_8) is a member of the homologous series of alkenes. 1-ene has structural isomers. | | |-----------------|-------|---|---| | | (i) | State the meaning of the term structural isomers. | (| | | | | | | | (ii) | Give the IUPAC name of the position isomer of but-1-ene. | | | | | | (| | | (iii) | Give the IUPAC name of the chain isomer of but-1-ene. | | | | | | | | | (iv) | Draw the displayed formula of a functional group isomer of but-1-ene. | | | (b) | But- | -1-ene burns in a limited supply of air to produce a solid and water only. | | | | (i) | Write an equation for this reaction. | | | | | | | | | (ii) | State one hazard associated with the solid product in part (b)(i). | | | | | | | | (c) | | mole of col-
ene and o | | | | | les of ethen | e, one mole o | f | |-----------|----------|---------------------------|-------------|-------------------------------|------------------|--------------------------------|--------------------------------|---------------|-----------------| | | (i) | Deduce th | e molecul | ar formula | of Y . | | | | | | | | | | | | | | | (1) | | | (ii) | Other thar | | | | | | | | | | | | | | | | | | (1) | | (d) | mono | oxide to for | m carbon | dioxide, wa | ater and n | | reacts with
ly. | nitrogen | | | | (i) | Write an e | | | | | | | | | | | | | | | | | | (1) | | | (ii) | Identify a | catalyst us | sed in a ca | talytic con | verter. | | | | | | | | | | | | | (Total 1 | (1)
1 marks) | | | | | | | | | | | | | Q2.The fo | ollowing | g table shov | vs the boil | ing points | of some s | traight-cha | ain alkanes. | | | | | | | CH₄ | C ₂ H ₆ | C₃H ₈ | C ₄ H ₁₀ | C ₅ H ₁₂ | | | | Во | oiling p | oint / °C | -162 | -88 | -42 | -1 | 36 | | | | (a) | State | e a process | s used to s | separate ai | n alkane fr | om a mixt | ure of these | alkanes. | | | | | | | | | | | | (1) | | | | | | | | | | | | | (b) | Both | ı C₃H₃ and 0 | C₄H₁₀ can b | e liquefied | d and used | as fuels f | or camping | stoves. | | | | gest, with a reason, which of these two fuels is liquefied more easily. | |------|--| | | | | | | | | | | | | | | | | Wri | te an equation for the complete combustion of C ₄ H ₁₀ | | | | | | | | | | | | plain why the complete combustion of C₄H₁₀ may contribute to environmental | | oror | plems. | | | | | | | | | | | | | | | | | | ance the following equation that shows how butane is used to make the spound called maleic anhydride. | | | CH ₃ CH ₂ CH ₂ CH ₃ +O ₂ >C ₂ H ₂ (CO) ₂ O +H ₂ O | | •• | | | | | | -th: | anethiol (C₂H₅SH), a compound with an unpleasant smell, is added to gas to | | | ble leaks from gas pipes to be more easily detected. | | JIIa | Write an equation for the combustion of ethanethiol to form carbon dioxide, | | | | | | water and sulfur dioxide. | | | | | | water and sulfur dioxide. | | (i) | water and sulfur dioxide. | Give $\ensuremath{\mathbf{one}}$ reason why this compound reacts with sulfur dioxide. | | | Substance | | |-----|-------|--|-----| | | | Reason | | | | | | (2) | | | (iii) | Ethanethiol and ethanol molecules have similar shapes. | | | | | Explain why ethanol has the higher boiling point. | (2) | | | | | | | (g) | The | following compound ${\bf X}$ is an isomer of one of the alkanes in the table on above. | | | | | H C H
H C C H
H C H | | | | (i) | Give the IUPAC name of X . | | | | | | (1) | | | | | | | | (ii) | X has a boiling point of 9.5 °C. | | | | | Explain why the boiling point of X is lower than that of its straight-chain isomer. | (2) | | | (iii) | The following compound Y is produced when X reacts with chlorine. | | |---------|---------|--|---------------------| | | | H C H H C H H H H | | | | | Deduce how many other position isomers of Y can be formed. Write the number of other position isomers in this box. | (1) | | | | | | | (h) | | cking of one molecule of an alkane Z produces one molecule of ethane, on ecule of propene and two molecules of ethene. | е | | | (i) | Deduce the molecular formula of Z . | | | | | | (1) | | | (ii) | State the type of cracking that produces a high proportion of ethene and propene. Give the two conditions for this cracking process. | | | | | Type of cracking | | | | | Conditions | | | | | (Tota | (2)
al 17 marks) | | | | | | | Q3.Hexa | ne (C₅H | H ₁₄) is a member of the homologous series of alkanes. | | | (a) | (i) | Name the raw material from which hexane is obtained. | | | | | | (4) | | | | | (1) | | | (ii) | Name the process used to obtain hexane from this raw material. | | |-----|--------------------------------|--|-----| | | | | (1) | | (b) | C ₆ H ₁₄ | has structural isomers. | | | | (i) | Deduce the number of structural isomers with molecular formula $C_{\scriptscriptstyle 0}H_{\scriptscriptstyle 14}$ | | | | | Write the number in this box. (Space for working) | | | | | | (1) | | | (ii) | State one type of structural isomerism shown by the isomers of C_6H_{14} | | | | | | (1) | | (c) | | molecule of an alkane X can be cracked to form one molecule of hexane and nolecules of propene. | | | | (i) | Deduce the molecular formula of X . | | | | | | (1) | State the type of cracking that produces a high percentage of alkenes. State the conditions needed for this type of cracking. (ii) | | | Type of cracking | | |-----|-------|--|-----| | | | Conditions | | | | | | (2) | | | | | | | | (iii) | Explain the main economic reason why alkanes are cracked. | | | | | | | | | | | (1) | | | | | | | (d) | | ane can react with chlorine under certain conditions as shown in the following ation. | | | | | C_6H_{14} + CI_2 \longrightarrow $C_6H_{13}CI$ + HCI | | | | (i) | Both the products are hazardous. The organic product would be labelled 'flammable'. | | | | | Suggest the most suitable hazard warning for the other product. | | | | | | (1) | | | | | | | | (ii) | Calculate the percentage atom economy for the formation of $C_6H_{13}CI$ ($M_r = 120.5$) in this reaction. | | | | | | | | | | | | | | | | (1) | (e) A different chlorinated compound is shown below. Name this compound and state its empirical formula. Page 8 | Name | | |-------------------|-----------------| | Empirical formula | ·• | | · | (2 | | | (Total 12 marks | **Q4.**Compound **X** is shown below. It is a member of a homologous series of hydrocarbons. Deduce the general formula of the homologous series that contains X. (a) (i) | (1) | |-----| (ii) Name a process used to obtain a sample of **X** from a mixture containing other members of the same homologous series. - (b) There are several isomers of **X**. - (i) Give the IUPAC name of the position isomer of X. (ii) Draw the structure of a functional group isomer of X. (1) At high temperatures, one molecule of C15H32 can be converted into two molecules of (c) | | ∧ an | d one molecule of another compound. | | |-----|---------------------------|--|-----| | | (i) | Write an equation for this reaction. | | | | | | (1) | | | (ii) | State the name of the process used to obtain a high yield of \mathbf{X} from $C_{15}H_{32}$ Give one reason why this process is used in industry. | | | | | Name | | | | | Reason | | | | | | (2) | | | (iii) | State why high temperatures are needed for this process. | | | | () | State why high temperatures are necessarior and process. | | | | | | (1) | | | | | | | (d) | | npound X can be converted into compound Y . npound Y is shown below. | | | H- | H H

 C C
 | I Н Н
>ССН | | | | (i) | Suggest the formula of a reagent that could be added to X in order to convert it into Y . | | | | | | (1) | | | (ii) | Give one use of Y . | | | | (/ | | | | | | | (1) | | (iii) | Write an equation to show the reaction of \mathbf{Y} in a limited supply of air to produce a solid and water only. | | |-------|--|--------------| | | | (1) | | (iv) | When a sample of Y , contaminated with CH₃SH, is burned completely in air, a toxic gas is formed. Identify this toxic gas and suggest a compound that could be used to remove the toxic gas from the products of combustion. | | | | Toxic gas | | | | Compound used to remove toxic gas | | | | | (2) | | (v) | Suggest the name of the process that occurs when the toxic gas in part (d)(iv) is removed. | | | | | (1) | | | | | | Exp | lain why the boiling points of X and Y are similar. | | | | | | | | | | | | | | | | (Total 16 ma | (2)
arks) | (e)