1. (a) T		drocarbon but-1-ene (C_4H_8) is a member of the homologous series of alkenes. 1-ene has structural isomers.	
	(i)	State the meaning of the term structural isomers.	
			(
	(ii)	Give the IUPAC name of the position isomer of but-1-ene.	
			(
	(iii)	Give the IUPAC name of the chain isomer of but-1-ene.	
	(iv)	Draw the displayed formula of a functional group isomer of but-1-ene.	
(b)	But-	-1-ene burns in a limited supply of air to produce a solid and water only.	
	(i)	Write an equation for this reaction.	
	(ii)	State one hazard associated with the solid product in part (b)(i).	

(c)		mole of col- ene and o					les of ethen	e, one mole o	f
	(i)	Deduce th	e molecul	ar formula	of Y .				
									(1)
	(ii)	Other thar							
									(1)
(d)	mono	oxide to for	m carbon	dioxide, wa	ater and n		reacts with ly.	nitrogen	
	(i)	Write an e							
									(1)
	(ii)	Identify a	catalyst us	sed in a ca	talytic con	verter.			
								(Total 1	(1) 1 marks)
Q2.The fo	ollowing	g table shov	vs the boil	ing points	of some s	traight-cha	ain alkanes.		
			CH₄	C ₂ H ₆	C₃H ₈	C ₄ H ₁₀	C ₅ H ₁₂		
Во	oiling p	oint / °C	-162	-88	-42	-1	36		
(a)	State	e a process	s used to s	separate ai	n alkane fr	om a mixt	ure of these	alkanes.	
									(1)
(b)	Both	ı C₃H₃ and 0	C₄H₁₀ can b	e liquefied	d and used	as fuels f	or camping	stoves.	

	gest, with a reason, which of these two fuels is liquefied more easily.
Wri	te an equation for the complete combustion of C ₄ H ₁₀
	plain why the complete combustion of C₄H₁₀ may contribute to environmental
oror	plems.
	ance the following equation that shows how butane is used to make the spound called maleic anhydride.
	CH ₃ CH ₂ CH ₂ CH ₃ +O ₂ >C ₂ H ₂ (CO) ₂ O +H ₂ O
••	
-th:	anethiol (C₂H₅SH), a compound with an unpleasant smell, is added to gas to
	ble leaks from gas pipes to be more easily detected.
JIIa	Write an equation for the combustion of ethanethiol to form carbon dioxide,
	water and sulfur dioxide.
	water and sulfur dioxide.
(i)	water and sulfur dioxide.

Give $\ensuremath{\mathbf{one}}$ reason why this compound reacts with sulfur dioxide.

		Substance	
		Reason	
			(2)
	(iii)	Ethanethiol and ethanol molecules have similar shapes.	
		Explain why ethanol has the higher boiling point.	
			(2)
(g)	The	following compound ${\bf X}$ is an isomer of one of the alkanes in the table on above.	
		H C H H C C H H C H	
	(i)	Give the IUPAC name of X .	
			(1)
	(ii)	X has a boiling point of 9.5 °C.	
		Explain why the boiling point of X is lower than that of its straight-chain isomer.	
			(2)

	(iii)	The following compound Y is produced when X reacts with chlorine.	
		H C H H C H H H H	
		Deduce how many other position isomers of Y can be formed. Write the number of other position isomers in this box.	(1)
(h)		cking of one molecule of an alkane Z produces one molecule of ethane, on ecule of propene and two molecules of ethene.	е
	(i)	Deduce the molecular formula of Z .	
			(1)
	(ii)	State the type of cracking that produces a high proportion of ethene and propene. Give the two conditions for this cracking process.	
		Type of cracking	
		Conditions	
		(Tota	(2) al 17 marks)
Q3.Hexa	ne (C₅H	H ₁₄) is a member of the homologous series of alkanes.	
(a)	(i)	Name the raw material from which hexane is obtained.	
			(4)
			(1)

	(ii)	Name the process used to obtain hexane from this raw material.	
			(1)
(b)	C ₆ H ₁₄	has structural isomers.	
	(i)	Deduce the number of structural isomers with molecular formula $C_{\scriptscriptstyle 0}H_{\scriptscriptstyle 14}$	
		Write the number in this box. (Space for working)	
			(1)
	(ii)	State one type of structural isomerism shown by the isomers of C_6H_{14}	
			(1)
(c)		molecule of an alkane X can be cracked to form one molecule of hexane and nolecules of propene.	
	(i)	Deduce the molecular formula of X .	
			(1)

State the type of cracking that produces a high percentage of alkenes. State the conditions needed for this type of cracking.

(ii)

		Type of cracking	
		Conditions	
			(2)
	(iii)	Explain the main economic reason why alkanes are cracked.	
			(1)
(d)		ane can react with chlorine under certain conditions as shown in the following ation.	
		C_6H_{14} + CI_2 \longrightarrow $C_6H_{13}CI$ + HCI	
	(i)	Both the products are hazardous. The organic product would be labelled 'flammable'.	
		Suggest the most suitable hazard warning for the other product.	
			(1)
	(ii)	Calculate the percentage atom economy for the formation of $C_6H_{13}CI$ ($M_r = 120.5$) in this reaction.	
			(1)

(e) A different chlorinated compound is shown below. Name this compound and state its empirical formula.

Page 8

Name	
Empirical formula	·•
·	(2
	(Total 12 marks

Q4.Compound **X** is shown below. It is a member of a homologous series of hydrocarbons.

Deduce the general formula of the homologous series that contains X. (a) (i)

(1)

(ii) Name a process used to obtain a sample of **X** from a mixture containing other members of the same homologous series.

- (b) There are several isomers of **X**.
 - (i) Give the IUPAC name of the position isomer of X.

(ii) Draw the structure of a functional group isomer of X.

(1)

At high temperatures, one molecule of C15H32 can be converted into two molecules of (c)

	∧ an	d one molecule of another compound.	
	(i)	Write an equation for this reaction.	
			(1)
	(ii)	State the name of the process used to obtain a high yield of \mathbf{X} from $C_{15}H_{32}$ Give one reason why this process is used in industry.	
		Name	
		Reason	
			(2)
	(iii)	State why high temperatures are needed for this process.	
	()	State why high temperatures are necessarior and process.	
			(1)
(d)		npound X can be converted into compound Y . npound Y is shown below.	
H-	H H C C 	I Н Н >ССН	
	(i)	Suggest the formula of a reagent that could be added to X in order to convert it into Y .	
			(1)
	(ii)	Give one use of Y .	
	(/		
			(1)

(iii)	Write an equation to show the reaction of \mathbf{Y} in a limited supply of air to produce a solid and water only.	
		(1)
(iv)	When a sample of Y , contaminated with CH₃SH, is burned completely in air, a toxic gas is formed. Identify this toxic gas and suggest a compound that could be used to remove the toxic gas from the products of combustion.	
	Toxic gas	
	Compound used to remove toxic gas	
		(2)
(v)	Suggest the name of the process that occurs when the toxic gas in part (d)(iv) is removed.	
		(1)
Exp	lain why the boiling points of X and Y are similar.	
	(Total 16 ma	(2) arks)

(e)