Q1.		Halog	ens are used to make halogenated organic compounds.	
	(a)	comp The	refrigerant used in air conditioners is a mixture of fluorinated alkanes. These pounds are made by fluorination reactions. mechanism for the reaction of fluorine with an alkane or with a fluoroalkane is a radical substitution similar to the reaction of chlorine with methane.	
		(i)	Write the overall equation for the reaction of fluorine with methane to form trifluoromethane (CHF $_{\mbox{\tiny 3}}$).	
				(1)
		(ii)	Write equations for the following steps in the mechanism for the reaction of fluorine with trifluoromethane (CHF ₃) to form tetrafluoromethane (CF ₄).	
			Initiation step First propagation step	
			Second propagation step	
			A termination step leading to the formation of hexafluoroethane.	
				(4)
	(b)	In the	profluorocarbons (CFCs) were used as refrigerants. e upper atmosphere, ultra-violet radiation breaks bonds in the CFCs to produce active intermediate that catalyses the decomposition of ozone.	
		(i)	An example of a CFC is 1,1,1-trichloro-2,2-difluoroethane. Draw the displayed formula of this CFC.	

	(ii)	Identify a bond in a CFC that is broken by ultra-violet radiation to produce a reactive intermediate. Give the name of this reactive intermediate that catalyses the decomposition of ozone. Write an overall equation for this decomposition of ozone.	
		Bond broken	
		Name of the reactive intermediate	
		Overall equation	
		(Total 9	(3) marks)
	molec violet l	cule is not produced when ethane reacts with bromine in the presence of light?	
Α	C ₂ H ₄ E	Br ₂	
В	HBr	0	
С	$H_{\scriptscriptstyle 2}$	0	
D	C ₄ H ₁₀		
		(Total ´	1 mark)

Q3.Chloromethanes, such as dichloromethane and trichloromethane, are produced in industry as they have many uses.

Trichloromethane has been used in the manufacture of the refrigerant chlorodifluoromethane.

- (a) Chlorine can react with dichloromethane (CH₂Cl₂) to form trichloromethane (CHCl₃).
 - (i) Write an equation for each of the following steps in the mechanism for this reaction.

		Initiation step	
		First propagation step	
		Second propagation step	
			(3)
	(ii)	Give one essential condition for this reaction and name the type of mechanism.	
		Essential condition	
		Type of mechanism	(2)
(b)		organic product, X , with M_r = 154.0 is obtained when chlorine reacts with loromethane.	
	(i)	Write an equation for the overall reaction of chlorine with trichloromethane to form \mathbf{X} , by the same mechanism as that outlined in part (a)(i).	
			(1)
	(ii)	The following infrared spectrum was obtained for a sample of ${\bf X}$ produced in this reaction.	

	Use this infrared spectrum to explain why it is possible to deduce that this sample of X contains no trichloromethane. You may find it helpful to refer to Table 1 on the Data Sheet.
	(Extra space)
(c)	Explain, with the aid of equations and the intermediates that form in the ozone layer, why the European Union has banned the use of chlorodifluoromethane (CHCIF ₂) as a refrigerant.

(2)

		(Ext	ra space)	
				(4)
	(d)		compound 2,3,3,3-tetrafluoropropene is the refrigerant used in all new car air ditioners.	
		(i)	Draw the displayed formula for 2,3,3,3-tetrafluoropropene.	
				(1)
		(ii)	Give one reason why 2,3,3,3-tetrafluoropropene is a more environmentally acceptable refrigerant than chlorodifluoromethane.	
			(Total 14 ma	(1) arks)
Q4 .T			ant R410A, used in air conditioners, is a mixture of two fluoroalkanes, roethane and difluoromethane.	
	(a)	(i)	The mechanism for the reaction of fluorine with either an alkane or a fluoroalkane is similar to that for the reaction of chlorine with methane.	
			Name the type of mechanism for the reaction of chlorine with methane.	
				(1)

	(ii)	Write equations for the following steps in the mechanism for the reaction of fluorine with fluoromethane (CH_3F) to form difluoromethane (CH_2F_2).	
		Initiation step	
		First propagation step	
		Second propagation step	
		A termination step leading to the formation of 1,2-difluoroethane.	
			(4)
	(iii)	Write an overall equation for the reaction of fluorine with ethane to form pentafluoroethane (CF₃CHF₂) by this mechanism.	(1)
(b)	ozor	e refrigerant R112A (CCI₃CF₂CI) has been banned because of concerns about ne depletion. e the IUPAC name for CCI₃CF₂CI	, ,
			(1)
(c)		ogen monoxide (NO) catalyses the decomposition of ozone into oxygen.	
	(i)	Write the overall equation for this decomposition.	

			(1)
	(ii)	Use the overall equation to deduce Step 3 in the following mechanism that shows how nitrogen monoxide catalyses this decomposition.	
		Step 1 $O_3 \longrightarrow O + O_2$	
		Step 2 NO + $O_3 \longrightarrow NO_2 + O_2$	
		Step 3(Total 9 ma	(1) arks)
•		n be used to make chlorinated alkanes such as dichloromethane.	
(a)		ite an equation for each of the following steps in the mechanism for the reaction hloromethane (CH ₂ Cl ₂).	
	Initia	ation step	
	Firs	t propagation step	
	 Sec	cond propagation step	
	 The	termination step that forms a compound with empirical formula CH₂Cl.	
			(4)
(b)	brok	nen chlorinated alkanes enter the upper atmosphere, carbon-chlorine bonds are ken. This process produces a reactive intermediate that catalyses the omposition of ozone. The overall equation for this decomposition is	
		2O ₃ \Longrightarrow 3O ₂	

	(i)	Name the type of reactive intermediate that acts as a catalyst in this reaction.	
			(1)
	(ii)	Write two equations to show how this intermediate is involved as a catalyst in them decomposition of ozone.	
		Equation 1	
		Equation 2(Total 7 mai	(2) rks)
Q6.There	are m	any uses of halogenated organic compounds despite environmental concerns.	
(a)		motrifluoromethane is used in fire extinguishers in aircraft. notrifluoromethane is formed when trifluoromethane reacts with bromine.	
		$CHF_3 + Br_2 \longrightarrow CBrF_3 + HBr$	
		reaction is a free-radical substitution reaction similar to the reaction of methane chlorine.	
	(i)	Write an equation for each of the following steps in the mechanism for the reaction of CHF_3 with Br_2	
		Initiation step	
		First propagation step	
		Second propagation step	
		A termination step	
	(ii)	State one condition necessary for the initiation of this reaction.	(4)
	\'' <i>!</i>		
			(1)

(b)		nine-containing and chlorine-containing organic compounds may have a role in lecomposition of ozone in the upper atmosphere.	
	(i)	Draw an appropriate displayed formula in the space provided to complete the following equation to show how CBrF ₃ may produce bromine atoms in the upper atmosphere.	
		CBrF₃ + Br⁺	
			(1)
	(ii)	In the upper atmosphere, it is more likely for CBrF ₃ to produce bromine atoms than it is for CClF ₃ to produce chlorine atoms.	
		Suggest one reason for this.	
			(1)
	(iii)	Bromine atoms have a similar role to chlorine atoms in the decomposition of ozone. The overall equation for the decomposition of ozone is	
		$2O_3 \longrightarrow 3O_2$	
		Write two equations to show how bromine atoms (Br•) act as a catalyst in the decomposition of ozone.	
		Explain how these two decomposition equations show that bromine atoms behave as a catalyst.	
		Equation 1	
		Equation 2	
		Explanation	

Q7. Trifl	uoron	nethane (CHF ₃) can be used to make the refrigerant chlorotrifluoromethane(CCIF ₃).	
(a	a) (Chlorotrifluoromethane is formed when trifluoromethane reacts with chlorine.	
		$CHF_3 + CI_2 \longrightarrow CCIF_3 + HCI$	
		he reaction is a free-radical substitution reaction similar to the reaction of methane ith chlorine.	
	(i	Write an equation for each of the following steps in the mechanism for the reaction of CHF ₃ with Cl ₂	
		Initiation step	
		First propagation step	
		Second propagation step	
		Termination step to form hexafluoroethane	
		(4	l)
	(i	Give one essential condition for this reaction.	
		(1	I)
(b		n some refrigeration systems, CHF₃ has replaced CCIF₃ because of concerns about zone depletion.	
	(i	ldentify the species formed from CCIF₃ that is responsible for the catalytic decomposition of ozone in the upper atmosphere.	
		(1	1)

(ii)	Write an overall equation to represent the decomposition of ozone into oxygen.
	(1)
	(Total 7 marks)