Q1.Which one of the following can react both by nucleophilic addition and by nucleophilic substitution?

(Total 1 mark)

(Total 1 mark)

Q2.Which one of the following types of reaction mechanism is **not** involved in the above sequence?

Q3.In which one of the following are the curly arrows not used correctly?

PhysicsAndMathsTutor.com

Q4.In which of the following is a curly arrow used incorrectly?

(Total 1 mark)

Q5.Which one of the following mechanisms is not involved in the reaction sequence below?

 $\mathsf{CH_3CH_3} \to \mathsf{CH_3CH_2CI} \to \mathsf{CH_3CH_2OH} \to \mathsf{CH_2=CH_2} \to \mathsf{CH_3CH_2Br}$

- A electrophilic addition
- **B** electrophilic substitution
- **C** nucleophilic substitution
- D free-radical substitution

(Total 1 mark)

- **Q6.** In the presence of ultraviolet light, methane and chlorine react to form a number of chlorine-containing products, including CH_2CI_2 and $CHCI_3$
 - (i) Write an equation for the initiation step in the mechanism for this reaction.

.....

(ii) Write the overall equation for the formation of $CHCI_3$ from CH_2CI_2 and CI_2

.....

(iii) Write equations for the two propagation steps by which CH_2CI_2 is converted into $CHCI_3$

Equation 1	
Equation 2	

(iv) Suggest what effect increasing the intensity of the ultraviolet light would have on the rate of the reaction between methane and chlorine. Explain your answer.

Effect on rate

(Total 6 marks)

Q7. (a) The equation below shows the reaction of 2-bromopropane with an excess of ammonia.

 $CH_{3}CHBrCH_{3}$ + $2NH_{3} \rightarrow CH_{3}CH(NH_{2})CH_{3}$ + $NH_{4}Br$

Name and outline the mechanism involved.

Name of mechanism

Mechanism

(b) When 2-bromopropane is heated with ethanolic potassium hydroxide, an elimination reaction occurs. State the role of potassium hydroxide and outline a mechanism for this reaction.

Role of potassium hydroxide

Mechanism

Q8.		The equation below represents a reaction between methane and chlorine.							
		(CH₄(g)	+ Cl ₂ (g) →	CH₃Cl(g)	+	HCl(g)	
((a)	State an essential condition required for this reaction to occur. Explain why this condition is essential.							
		Condition							
		Explanation							(2)
((b)	(i)	State th	e type of	mech	anism invo	lved	in the above reaction.	
		(ii) l	Name th	e three t	ypes c	of step invol	ved	in this mechanism.	
		3	Step 1						
		3	Step 2						
		3	Step 3						(4)
((c)) In addition to CH ₃ Cl, compounds such as CH ₂ Cl ₂ and CH ₃ CH ₂ Cl may also be formed when chlorine reacts with methane.							
		(i) f	Write eq rom CH	luations f ₃Cl	or the	two steps i	n th	e mechanism by which CH_2CI_2 is formed	

Equation 1

Equation 2

(ii) Write an equation to represent a step in the mechanism in which CH₃CH₂Cl is formed.

(3) (Total 9 marks)

Q9.Refer to the following reaction sequence:

Which one of the following types of reaction mechanism is **not** involved in the above sequence?

- A electrophilic addition
- **B** electrophilic substitution
- **C** addition-elimination
- **D** elimination

(Total 1 mark)

Q10. The reaction scheme below shows the conversion of compound **A**, 2-methylbut-1-ene, into compound **B** and then into compound **C**.

(a) The structure of **A** is shown below. Circle those carbon atoms which must lie in the same plane.

$$\overset{H}{\underset{H}{\sim}} C = C \overset{CH_3}{\underset{CH_2 - CH_3}{\sim}}$$

(b) Outline a mechanism for the reaction in Step 1.

(1)

(c) State the reagent and condition used in Step 2. Name compound **C**.

Reagent
Condition
Name of compound C

When compound A is converted into compound C, a second alcohol, D, is also formed.
Alcohol D is isomeric with C but is formed as a minor product. Identify alcohol D and explain why it is formed as the minor product.

Identity of alcohol **D**

Explanation	
	(3)
	(Total 11 marks)
	(10tal 11 marks)