M1.B

[1]

M2.C

[1]

M3.D

[1]

M4.C

[1]

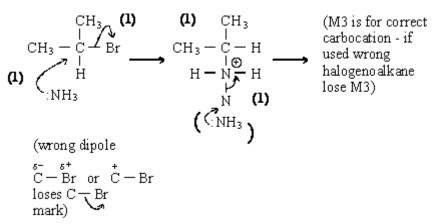
M5.B

[1]

M6. Penalise missing • once only

- (i) $Cl_2 \rightarrow 2 Cl \cdot (1)$
- (ii) $CH_2CI_2 + CI_2 \rightarrow CHCI_3 + HCI$ (1)
- (iii) $CH_2Cl_2 + Cl^{\bullet} \rightarrow CHCl_2^{\bullet} + HCl$ (1) $CHCl_2^{\bullet} + Cl_2 \rightarrow CHCl_3 + Cl^{\bullet}$ (1)

Can reverse order


(iv) Effect on rate: increases (1) If decrease given C.E zero marks Explanation: more Cl• radicals formed (1)

More Cl atoms, more Cl—Cl or Cl₂ bonds broken, more Cl₂ have

E_A, increased rate of CI• production

[6]

M7. (a) Name of mechanism: nucleophilic substitution (1) Mechanism:

Marks S_N1 using same points ∴ M2 requires

$$CH_3 = \begin{matrix} CH_3 \\ C \\ C \\ O \\ MH_3 \end{matrix}$$

(b) Role of potassium hydroxide: Base (1) Mechanism:

5

Mark E1 using same points

[10]

M8. (a) Condition: U.V. light or sunlight or 450°C or high temp (1)

Explanation: U.V. light etc. provides energy to break(CI- CI) bond (1)

Do not accept reference to E_a or wrong bond or 'to make CI radicals'

2

5

- (b) (i) (Free) radical substitution (1)
 - (ii) Step 1: initiation (1)
 Step 2: propagation (1)
 Step 3: termination (1)
 Any order
 Don't be too harsh on spelling

4

(c) (i) Equation 1: CH₃ + CI• → CH₂CI• + HCI (1)
 Equation 2: CH₂CI• + CI₂ → CH₂CI₂ + CI• (1)
 or CH₂CI• + CI• → CH₂CI₂
 Mark equ independently
 any order

(ii)
$$CH_2CI^{\bullet} + CH_3^{\bullet} \rightarrow CH_3CH_2CI$$
 (1)
or $CH_3CH_2^{\bullet} + CI_2 \rightarrow CH_3CH_2CI + CI^{\bullet}$
or $CH_3CH_2^{\bullet} + CI^{\bullet} \rightarrow CH_3CH_2CI$

Equ must have CH₃CH₂Cl as product Accept C₂H₅Cl Penalise absence of • once only

[9]

3

M9.A

[1]

M10. (a)
$$H \subset CH_3 \subset CH_3 \subset CH_3$$

1

May circle 4 C's separately

(b) $\begin{array}{c}
H^{+} \text{can score M1 + M2} \\
H_{2} \text{SO}_{4} \text{ only M1 - see diagram not M2}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
H \\
C = C \\
CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = C \\
CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = C \\
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = C \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = CH_{2} \text{CH}_{3}$ $\begin{array}{c}
H \\
C = CH_{2} \text{CH}_{3}
\end{array}$ $\begin{array}{c}
H \\
C = CH_{2} \text{CH}_{3}$ $\begin{array}{c}
H \\
C = C$

Ignore δ + and δ - unless wrong

4

(c) Reagent: H₂O or water **OR steam, Or dilute sulphuric acid (1)**

Condition: heat, or warm, or boil or reflux [50-100°C] (1) Name of compound **C**: 2-methylbutan-2-ol (1)

Allow 2-methylbutan<u>e</u>-2-ol Penalise hydroxy-2-methylbutane and 2-methylbut-2-ol once only in the paper

3

(d) Identity of alcohol D: 2-methylbutan-1-ol (1), OR its structure, could describe structure

Explanation: C formed via t-carbocation; D via p-carbocation, (1) tertiary more stable than primary (1)

If have wrong carbocation can still score stability mark

[11]