Q1. The table below shows the structures of three isomers with the molecular formula $C_{\scriptscriptstyle 5}H_{\scriptscriptstyle 10}O$

H ₃ C H C=C CH(OH)CH ₃	(<i>E</i>)-pent-3-en-2-ol
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ C=O	pentanal
CH ₃ CH ₂ CH ₂ C=O	

(a) Complete the table by naming Isomer 3.

(1)

(1)

(b) State the type of structural isomerism shown by these three isomers.

.....

(c) The compound (Z)-pent-3-en-2-ol is a stereoisomer of (E)-pent-3-en-2-ol.

(i) Draw the structure of (*Z*)-pent-3-en-2-ol.

(1)

	(ii)	Identify the feature of the double bond in ($\it E$)-pent-3-en-2-ol and that in ($\it Z$)-pent-3-en-2-ol that causes these two compounds to be stereoisomers.	
			(1)
(d)	and Iden	nemical test can be used to distinguish between separate samples of Isomer 2 Isomer 3. Itify a suitable reagent for the test. e what you would observe with Isomer 2 and with Isomer 3.	
	Test	reagent	
	Obs	ervation with Isomer 2	
	Obs	ervation with Isomer 3	
			(3)
			•
(e)	The	following is the infrared spectrum of one of the isomers 1, 2 or 3.	
		100 M M	
Trai	nsmitt	ance/% = 50-	

(i) Deduce which of the isomers (1, 2 or 3) would give this infrared spectrum. You may find it helpful to refer to **Table 1** on the Data Sheet.

2000

1500

Wavenumber / cm⁻¹

1000

500

(1)

.....

3000

0 | . . 4000

		(ii)	Identify two features of the infrared spectrum that support your deduction and case, identify the functional group responsible.	ction.
			Feature 1 and functional group	
			Feature 2 and functional group	
				(2) (Total 10 marks)
				,
Q2.			actions obtained from petroleum contain saturated hydrocarbons that ogous series of alkanes.	belong to
	(a)	Any	homologous series can be represented by a general formula.	
		(i)	State two other characteristics of homologous series.	
			Characteristic 1	
			Characteristic 2	
		(::)		
		(ii)	Name the process which is used to obtain the fractions from petroleu	ım.

	(iii)	State what is meant by the term <i>saturated</i> , as applied to hydrocarbons.	
			(4
(b)	Dec	ane has the molecular formula $C_{\scriptscriptstyle{10}}H_{\scriptscriptstyle{22}}$	
	(i)	State what is meant by the term <i>molecular formula</i> .	
	(ii)	Give the molecular formula of the alkane which contains 14 carbon atoms.	
	(iii)	Write an equation for the incomplete combustion of decane, $C_{\tiny{10}}H_{\tiny{22}}$, to produce carbon and water only.	
			(3
(c)	NO,	en petrol is burned in an internal combustion engine, some nitrogen monoxide, is formed. This pollutant is removed from the exhaust gases by means of a tion in a catalytic converter.	
	(i)	Write an equation for the reaction between nitrogen and oxygen to form nitrogen monoxide.	
	(ii)	Identify a catalyst used in a catalytic converter.	

	(iii)	Write an equation to show how nitrogen monoxide is removed from exhaust gases as they pass through a catalytic converter.	the
			(3) (Total 10 marks)
	Octan	e is the eighth member of the alkane homologous series.	
(a)	Stat	e two characteristics of a homologous series.	

D)	different alkanes.	
		(1)

(2)

(c) The structure shown below is one of several structural isomers of octane.

Give the meaning of the term structural isomerism. Name this isomer and state its empirical formula.

Q3.

				(4)	
	(d)	Sug _g than	gest why the branched chain isomer shown above has a lower boiling poctane.	point	
				(2)	
				(Total 9 marks)	
Q4 .		Pent-	1-ene is a member of the alkene homologous series.		
	(a)	Pen	t-1-ene can be separated from other alkenes.		
		State	e the physical property of alkenes that allows them to be separated fror ure by fractional distillation.	n a	
				(1)	
	(b)	(i)	State the meaning of the term structural isomerism.		
				(2)	

	(ii)	Name the branched chain isomer of pent-1-ene shown below.	
	н	H_CCH ₃ CCH ₃	
	н	Н	
			(1)
	(iii)	Draw the structure of a functional group isomer of pent-1-ene.	
			(1)
(c)		cracking of one molecule of compound X produces pent-1-ene, ethene and	
		ne in a 1:2:1 mol ratio. uce the molecular formula of X and state a use for the ethene formed.	
	Mole	ecular formula of X	
	Use	of ethene	(2)
		(Total	7 marks)

- **Q5.** Hexane is a member of the homologous series of alkanes.
 - (a) State **two** characteristics of a *homologous series*.

	Characteristic 1						
	Cha	racteristic 2					
			(2)				
(b)	(i)	Hexane can be converted into 2,2-dichlorohexane.					
		Draw the displayed formula of 2,2-dichlorohexane and deduce its empirical formula.					
		Displayed formula					
		Empirical formula					
			(2)				
	(ii)	Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane.					
			(2)				
(c)	A re	eaction of hexane with chlorine is shown by the equation below. $C_6H_{14} + 2CI_2 \rightarrow C_6H_{12}CI_2 + 2HCI$					
	Calc	culate the percentage atom economy for the formation of $C_6H_{12}CI_2$ in this reaction.					
			(2)				

(d) The boiling points of some straight-chain alkanes are shown below.

Alkane	C ₄ H ₁₀	C ₅ H ₁₂	C ₆ H ₁₄
Boiling point / °C	- 0.5	36.3	68.7

	(i)	Explain the trend in these boiling points.	
				(2
				•
	(ii)	Name a process which can be used to separate $C_{\scriptscriptstyle 5}H_{\scriptscriptstyle 12}$ from $C_{\scriptscriptstyle 6}H_{\scriptscriptstyle 14}$	
			(Total 11 m	(1 arks
Q6.			es are saturated hydrocarbons which can be obtained from crude oil. an example of an alkane. A molecule of pentane contains five carbon atoms.	
	(a)	(i)	State the meaning of the term <i>saturated</i> and of the term <i>hydrocarbon</i> as applied to alkanes.	
			Saturated	
			Hydrocarbon	
				(2
	(ii)	Give the general formula for the alkanes.	

			(1)
(b)	Pen	tane burns completely in oxygen.	
	(i)	Write an equation for this reaction.	
			(1)
	(ii)	State how the products of this reaction may affect the environment.	
			(1)
(c)		the name of a solid pollutant which may form when pentane burns mpletely in air.	
			(1)
(d)		molecule of $C_{\scriptscriptstyle 9}H_{\scriptscriptstyle 20}$ can be cracked to form one molecule of pentane and one r product.	
	(i)	Write an equation for this cracking reaction.	
			(1)
	(ii)	Suggest a type of compound that can be manufactured from the other product	
	(11)	of this cracking reaction.	
			(1)

		(1)
(e)	Pentane can react to form the following haloalkane Q .	
Н-	H Br H H Br 	

State why a high temperature is needed for cracking reactions to occur.

(i) Name Q.

(iii)

(ii) State the type of structural isomerism shown by **Q** and the haloalkane shown below.

(Total 11 marks)