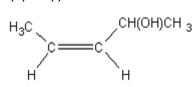
M1. (a) Pentan-2-one

ONLY but ignore absence of hyphens


Functional group (isomerism) (b)

Both words needed

1

1

(i) (c)

Award credit provided it is obvious that the candidate is drawing the Z / cis isomer

The group needs to be CHOHCH₃ but do not penalise poor C-C bonds or absence of brackets around OH

Trigonal planar structure not essential

1

Restricted <u>rotation</u> (about the C=C) (ii)

OR

No (free) rotation (about the C=C)

1

(d)

M1 Tollens' (reagent)	M1 Fehling's (solution) / Benedict's
(Credit ammoniacal silver nitrate OR a description of making Tollens')	(Penalise Cu²⁺(aq) or CuSO₄ but mark M2 and M3)
(Do not credit Ag⁺, AgNO₃ or [Ag(NH₃)₂⁺] or "the silver mirror test" on their own, but mark M2 and M3)	
M2 silver mirror	M2 Red solid/precipitate
OR black solid or black precipitate	(Credit <u>orange</u> or <u>brown solid</u>)

M3 (stays) colourless	M3 (stays) blue
OR	OR
no (observed) change / no reaction	no (observed) change / no reaction

If M1 is blank CE = 0, for the clip

Check the partial reagents listed and if M1 has a <u>totally</u> incorrect reagent, CE = 0 for the clip

Allow the following alternatives

M1 (acidified) potassium dichromate(VI) (solution); mark on from incomplete formulae or incorrect oxidation state

M2 (turns) green

M3 (stays) orange / no (observed) change / no reaction OR

M1 (acidified) potassium manganate(VII) (solution); mark on from incomplete formulae or incorrect oxidation state

M2 (turns) colourless

M3 (stays) purple / no (observed) change / no reaction

In all cases for M3

Ignore "nothing (happens)"

Ignore "no observation"

3

(e) (i) Spectrum is for Isomer 1

or named or correctly identified

The explanation marks in (e)(ii) depend on correctly identifying Isomer 1.

The identification should be unambiguous but candidates should not be penalised for an imperfect or incomplete name. They may say "the alcohol" or the "alkene" or the "E isomer"

1

(ii) If Isomer 1 is correctly identified, award <u>any two</u> from

- (Strong / broad) absorption / peak in the range
 3230 to 3550 cm⁻¹ or specified value in this range
 or marked correctly on spectrum
 and
 (characteristic absorption / peak for) OH group /alcohol group
 - No absorption / peak in range 1680 to 1750 cm⁻¹ or absence marked correctly on spectrum

and

(No absorption / peak for a) <u>C=O</u> group / <u>carbonyl group / carbon-oxygen double bond</u>

 Absorption / peak in the range <u>1620 to 1680</u> cm⁻¹ or specified value <u>in this range or marked correctly</u> on spectrum

<u>and</u>

(characteristic absorption / peak for) <u>C=C</u> group / alkene / carbon-carbon double bond

If 6(e)(i) is incorrect or blank, CE=0

Allow the words "dip" OR "spike" OR "trough" OR "low transmittance" as alternatives for absorption.

Ignore reference to other absorptions e.g. C-H, C-O

[10]

2

M2. (a) (i) any two from:

show a gradation/trend/gradual change in physical properties/ a specified property differ by CH₂ chemically similar or react in the same way have the same functional group

(penalise 'same molecular formula') (penalise 'same empirical formula')

2

(ii) fractional distillation or fractionation

1

(iii) contains only single bonds or has no double bonds

(credit 'every carbon is bonded to four other atoms' provided it does not contradict by suggesting that this will always be H)

1

(b) (i) the molecular formula gives the actual <u>number of atoms of each</u>

1

(ii) $C_{14}H_{30}$ only

(penalise as a contradiction if correct answer is accompanied by other structural formulae)

1

(iii) $C_{10}H_{22} + 5\frac{1}{2}O_2 \rightarrow 10C + 11H_2O$ (or double this equation)

1

(c) (i) $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$ (or double this equation)

1

(ii) Platinum or palladium or rhodium

1

1

(iii) $2CO + 2NO \rightarrow 2CO_2 + N_2 \text{ or }$

 $2NO \rightarrow N_2 + O_2$ or

(ignore extra O₂ molecules provided the equation balances)

 $C + 2NO \rightarrow CO_2 + N_2$

(or half of each of these equations)

 $C_8H_{18} + 25NO \rightarrow 8CO_2 + 12\frac{1}{2}N_2 + 9H_2O$ (or double this equation)

[10]

- **M3.** (a) (Same) General formula/allow a named homologous series with its general formula
 - Chemically similar/same (chemical) reactions
 - Same functional group
 - Trend in physical properties/eg inc bp as M_r increases
 - (Molecules) increase by $CH_2/M_r = 14$

(b)

Fractional distillation/fractionation/chromatography

	Allow GLC	1
(c)	(Molecules/compounds/substances) with the same molecular formula/same number and type of atoms Allow alkanes with same molecular formula Allow same chemical formula in M1 = 0 but can allow M2	1
	but different structural formula/different displayed formula/different arrangement of atoms/different structures	•
	Not different positions in space	1
	2,4-dimethylhexane M2 dependent on M1	1
	C₄H₃ Ignore the absence of dash and/or commas	1
(d)	less surface contact/less surface area/less polarisable molecule	1
	so fewer/weaker/less Van der Waals'/vdw forces	
	Allow more spherical or fewer points of contact	
	Not smaller molecule/not more compact molecule/not shorter	

[9]

Must be comparative answer ie not just few VDW forces

Assume 'it' refers to the branched isomer

Allow converse arguments

QoL

M4. (a) (Different) boiling points

Ignore mp's, references to imf, different volatilities

1

(b) (i) Compound which have the same molecular formula Accept same no and type of atom for M1

But If same (chemical) formula M1 = 0 but allow M2 If empirical formula CE = 0/2

but different structures/different structural formulae/different displayed formulae M2 dependent on M1

1

1

(ii) 3-methylbut-1-ene

only

ignore commas and hyphens

1

(iii)

Allow any correct structure with a cyclic alkane

Do not allow

1

$$H_2$$
 H_2
 H_2
 H_2

i.e with an H missing on one C

(c) $C_{13}H_{28}$

only

1

<u>Making</u> plastics/used to make polymers or polythene/used to make antifreeze/make ethanol/ripening fruit/any named additional polymer

not used **as** a plastic/polymer/antifreeze not just 'polymers' – we need to see that they are being made

[6]

M5. (a) General formula;

Chemically similar;

Same functional group;

Trend in physical properties eg inc bp as M_r increases;

Contains an additional CH₂ group; Any two points.

2 max

(b) (i)

All bonds and atoms must be shown.

1

C₃H₆CI;

Allow any order of elements.

Do not allow EF consequential on their wrong displayed formula.

1

(ii) Same Molecular formula/ both C₆H₁₂C₁₂/ same number and type of atoms;

1

Different structural formula/ different structure/ different displayed formula;

Not atoms or elements with same MF CE=O.

Allow different C skeleton.

If same chemical formula can allow M2 only.

M2 insufficient to say atoms arranged differently.

M2 consequential on M1.

1

(c) $M_r = 228$ for total reactants;

1

$$155 \times 100$$

Allow 67.98 or 68.0 or 68%.

1

(d) (i) Bp increases with increasing (molecular) size/ increasing M/ increasing no of electrons/increasing chain length;

Atoms CE =0.

1

Increased VDW forces (between molecules) (when larger molecule)/ bigger IMFs;

QWC

Not dipole-dipole or hydrogen bonds. If VDW between atoms in M2 CE = 0.

1

(ii) Fractional distillation/ fractionation/ GLC/chromatography;

[11]

M6. (a) (i) single (C-C) bonds only/no double (C=C) bonds

1

Allow all carbon atoms bonded to four other atoms Single C-H bonds only = 0 C=H CE

C and H (atoms) only/purely/solely/entirely

Not consists or comprises Not completely filled with hydrogen CH molecules = CE Element containing C and H = CE

1

(ii) C_nH_{2n+2} Formula only

1

(b) (i) $C_sH_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ Accept multiples Ignore state symbols

 $C_{x}H_{2x+2}$

1

(ii) gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change

Allow CO₂ or water is greenhouse gas/causes global warming
Acid rain/ozone CE = 0

1

(c) carbon

Allow C

Allow soot

1

(d) (i) $C_9H_{20} \rightarrow C_5H_{12} + C_4H_8$

OR

$$\begin{array}{c} C_{\scriptscriptstyle 9}H_{\scriptscriptstyle 20} \rightarrow C_{\scriptscriptstyle 5}H_{\scriptscriptstyle 12} + 2C_{\scriptscriptstyle 2}H_{\scriptscriptstyle 4} \\ & \textit{Accept multiples} \end{array}$$

1

(ii) Plastics, polymers

Accept any polyalkene/haloalkanes/alcohols

1

(iii) so the <u>bonds</u> break **OR** because the <u>bonds</u> are strong IMF mentioned = 0

1

(e) (i) 1,4-dibromo-1-chloropentane/1-chloro-1,4-dibromopentane *Ignore punctuation*

1

(ii) Chain/position/positional

Not structural or branched alone

[11]