(a)	Give the meaning of the terms saturated and hydrocarbon as applied to saturated hydrocarbons.
	Saturated
	Hydrocarbon
(b)	If the boiler for a central heating system is faulty, a poisonous gas may be produced
(5)	during the combustion of $C_{16}H_{34}$
	Write an equation for the reaction that forms this poisonous gas and one other product only.
(c)	Explain why the sulfur compounds found in crude oil should be removed from the fractions before they are used for central heating fuel.
	The second secon
(4)	
(d)	A hydrocarbon C ₁₆ H ₃₄ can be cracked to form C ₈ H ₁₈ , ethene and propene.
(d)	

		propene.	(4)
	(iii)	Draw the displayed formula of the functional group isomer of propene.	(1)
			(1)
(e)		re are many structural isomers with the molecular formula C_8H_{18} v the structure of 2,3,3-trimethylpentane.	

(f) A compound C_8H_{18} reacts with chlorine to give several haloalkanes.

Give the IUPAC name of the following haloalkane.

(1)

Q2.Lysine and alanine are two amino acids.

(a)	Give the	IUPAC	name	of	lysine.
-----	----------	--------------	------	----	---------

(1)

- (b) Draw structures to show the product formed in each case when lysine reacts with
 - (i) an excess of aqueous HCl

(1)

(ii) an excess of aqueous NaOH

(1)

(iii) methanol in the presence of a small amount of concentrated H₂SO₄

		(1)
(c)	The mass spectrum of alanine gives a major peak at $m/z = 44$	
	Write an equation for the fragmentation of the molecular ion of alanine to give an ion that produces this peak. In your answer, draw the displayed formula for this fragment ion.	
		(2)
(d)	Draw a dipeptide formed from one molecule of lysine and one molecule of alanine.	
		(1)
(e)	The dipeptide in part (d) is hydrolysed in acid conditions and the mixture produced is analysed by column chromatography. The column is packed with a resin which acts as a polar stationary phase.	
	Suggest why lysine leaves the column after alanine.	
		(2)

(1)

(1)

- Q3.Compound J, known as leaf alcohol, has the structural formula CH₃CH₂CH=CHCH₂CH and is produced in small quantities by many green plants. The *E* isomer of J is responsible for the smell of freshly cut grass.
 - (a) Give the structure of the E isomer of J.

(b) Give the **skeletal formula** of the organic product formed when **J** is dehydrated using concentrated sulfuric acid.

(c) Another structural isomer of **J** is shown below.

Explain how the Cahn-Ingold-Prelog (CIP) priority rules can be used to deduce the full IUPAC name of this compound.

 	 	• • • • • • • • • • • • • • • • • • • •	

		3)
(d)	The effect of gentle heat on maleic acid is shown below. + H ₂ O	
	A student predicted that the yield of this reaction would be greater than 80%.	
	In an experiment, 10.0 g of maleic acid were heated and 6.53 g of organic product were obtained.	
	Is the student correct? Justify your answer with a calculation using these data.	
	(Total 10 marks	2) s)
	bil-fired heaters use paraffin as a fuel. of the compounds in paraffin is the straight-chain alkane, dodecane ($C_{\tiny 12}H_{\tiny 26}$).	
(a)	Give the name of the substance from which paraffin is obtained. State the name of the process used to obtain paraffin from this substance.	
	Substance	

	Prod	cess	(2)				
(b)	The combustion of dodecane produces several products.						
		e an equation for the incomplete combustion of dodecane to produce gaseous ducts only.					
			(1)				
(c)	Oxi	des of nitrogen are also produced during the combustion of paraffin in air.					
	(i)	Explain how these oxides of nitrogen are formed.					
			(2)				
	(ii)	Write an equation to show how nitrogen monoxide in the air is converted into nitrogen dioxide.					
			(1)				
	(iii)	Nitric acid (HNO₃) contributes to acidity in rainwater.					
		Deduce an equation to show how nitrogen dioxide reacts with oxygen and water to form nitric acid.					
			(1)				
(d)	Doo	Dodecane (C ₁₂ H ₂₆) can be cracked to form other compounds.					
	(i)	Give the general formula for the homologous series that contains dodecane.					

(3)

(2)

(2)

(ii) Write an equation for the cracking of one molecule of dodecane into equal amounts of two different molecules each containing the same number of carbon atoms.

State the empirical formula of the straight-chain alkane that is formed

State the empirical formula of the straight-chain alkane that is formed. Name the catalyst used in this reaction.

Equation

Empirical formula of alkane

Catalyst

.....

(iii) Explain why the melting point of dodecane is higher than the melting point of the straight-chain alkane produced by cracking dodecane.

.....

(e) Give the IUPAC name for the following compound and state the type of structural isomerism shown by this compound and dodecane.

IUPAC name

Type of structural isomerism

(f) Dodecane can be converted into halododecanes.

		Deduce the formula of a substance that could be reacted with dodecane to produce 1-chlorododecane and hydrogen chloride only.	
		(Total 16 m	(1) narks)
		ne (C_8H_{18}) is the common name for the branched-chain hydrocarbon that burns of the skeletal formula of isooctane is shown below.	
(a)	Give the IUPAC name for isooctane.	(1)
(Deduce the number of peaks in the ¹³C NMR spectrum of isooctane. 5 6 7 8	(1)
(c)	Isooctane can be formed, together with propene and ethene, in a reaction in which one molecule of an alkane that contains 20 carbon atoms is cracked. Using molecular formulas, write an equation for this reaction.	(1)

(d)	How do the products of the reaction in part (c) show that the reaction is an example of thermal cracking?	
		(1)
(e)	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers.	
	Number of monochloro isomers	
	Structure	
		(0)
		(2)
(f)	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound.	
		(4)
		(1)
(g)	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes 35 Cl and 37 Cl in the ratio 1.5 : 1.0 Calculate the M_r of this monochlorooctane.	

	$M_r = \dots$	(2
(h)	Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds. One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass. Calculate the molecular formula of this compound.	
	Molecular formula =(Total 12 ma	(3 arks