	Il heating fuel, obtained by the fractional distillation of crude oil, contains saturated ocarbons with the molecular formula $C_{\rm 16}H_{\rm 34}$	
(a)	Give the meaning of the terms saturated and hydrocarbon as applied to saturated hydrocarbons.	
	Saturated	
	Hydrocarbon	
		(2)
(b)	If the boiler for a central heating system is faulty, a poisonous gas may be produced during the combustion of $C_{16}H_{34}$	
	Write an equation for the reaction that forms this poisonous gas and one other product only.	
(c)	Explain why the sulfur compounds found in crude oil should be removed from the fractions before they are used for central heating fuel.	(1)
		(2)
(d)	A hydrocarbon $C_{16}H_{34}$ can be cracked to form C_8H_{18} , ethene and propene. (i) Write an equation to show this cracking reaction.	
	(ii) Suggest one important substance manufactured on a large scale from	(1)

		propene.	
	(iii)	Draw the displayed formula of the functional group isomer of propene.	(1)
			(1)
(e)		re are many structural isomers with the molecular formula C_8H_{18} v the structure of 2,3,3-trimethylpentane.	

(f) A compound C_8H_{18} reacts with chlorine to give several haloalkanes. Give the IUPAC name of the following haloalkane.

(1)

Q2.How many structu	iral isomers l	have the mole	cular formula	CH Br2
UZ. HOW HIAHY SHUCK	ilai isoili e is i	nave the more	culai lollilula	U₄□°DI (

A 2

B 3

C 4

D 5

(Total 1 mark)

Q3. How many secondary amines have the molecular formula C₄H₁₁N?

A 2

B 3

C 4

D 5

(Total 1 mark)

Q4.Compound **J**, known as leaf alcohol, has the structural formula CH₃CH₂CH=CHCH₂CH and is produced in small quantities by many green plants. The *E* isomer of **J** is responsible for the smell of freshly cut grass.

(a) Give the structure of the E isomer of J.

(b) Give the **skeletal formula** of the organic product formed when **J** is dehydrated using concentrated sulfuric acid.

(1)

(c) Another structural isomer of **J** is shown below.

Explain how the Cahn-Ingold-Prelog (CIP) priority rules can be used to deduce the full IUPAC name of this compound.

(6)

(d) The effect of gentle heat on maleic acid is shown below.

Page 5

		A stude	ent predicted that the yield of this reaction would be greater than 80	%.
		In an ex were ob	experiment, 10.0 g of maleic acid were heated and 6.53 g of organic otained.	product
		Is the st	tudent correct? Justify your answer with a calculation using these of	lata.
				(2) (Total 10 marks)
				(
Q5.⊦	low m	any isom	ners have the molecular formula C ₅ H ₁₂ ?	
	Α	2	0	
	В	3	0	
		3		
	С	4		
	D	5	0	/Tatal 4 aul)
				(Total 1 mark)
Q6. 2			nylpentane is heated with potassium hydroxide dissolved in ethano mers are formed.	I. Two
	(a)	State th	ne meaning of the term structural isomers .	
				••
				(1)

(b)	Name and draw the mechanism for the formation of one of the isomers.			
	Name of mechanism			
	Mechanism			

(5) (Total 6 marks)

Q7.Isooctane (C₈H₁₈) is the common name for the branched-chain hydrocarbon that burns smoothly in car engines. The skeletal formula of isooctane is shown below.

- (a) Give the IUPAC name for isooctane.

 (1)
- (b) Deduce the number of peaks in the ¹³C NMR spectrum of isooctane.

5

	6	
	7 0	
	8	(1)
(c)	Isooctane can be formed, together with propene and ethene, in a reaction in which one molecule of an alkane that contains 20 carbon atoms is cracked. Using molecular formulas, write an equation for this reaction.	
		(1)
(d)	How do the products of the reaction in part (c) show that the reaction is an example of thermal cracking?	
		(1)
(e)	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers. Number of monochloro isomers Structure	
		(2)
(f)	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound.	

(g)	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes ³⁵ Cl and ³⁷ Cl in the ratio 1.5 : 1.0 Calculate the <i>M</i> _r of this monochlorooctane.	(1)
(h)	Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds. One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass. Calculate the molecular formula of this compound.	(2)
	Molecular formula =(Total 12 ma	(3) arks)

Q8. Dodecane (C₁₂H₂₆) is a hydrocarbon found in the naphtha fraction of crude oil. Dodecane can be used as a starting material to produce a wide variety of useful products. The scheme below shows how one such product, polymer Y, can be produced from dodecane.

(a)	Name the homologous series that both C ₂ H ₄ and C ₄ H ₈ belong to.
	Draw a functional group isomer of C ₄ H ₈ that does not belong to this homologous
	series.

Functional group isomer

(2)

(b) Identify compound X.

(1)

(c) Name polymer Y.

(1)

Reaction 1 is an example of thermal cracking and is carried out at a temperature of (d) 750 °C.

State one other reaction condition needed.

		(1)
	Reaction 2 is exothermic. A typical compromise temperature of 200 °C is used ndustrially for this reaction.	
	Explain the effect of a change of temperature on both the position of equilibrium and the rate of reaction, and justify why a compromise temperature is used industrially.	
•••		
	/Total 11 ma	(6)