| (a) | | e presence of these ions can be confirmed by reacting separate samples of ution X with aqueous ammonia and with aqueous sodium carbonate. | |-----|------|---| | | Writ | te equations for each of these reactions and describe what you would observe. | (b) | | 0.0 cm ³ sample of solution X was added to 50 cm ³ of dilute sulfuric acid and de up to 250 cm ³ of solution in a volumetric flask. | | | A 25 | 5.0 cm ³ sample of this solution from the volumetric flask was titrated with a 205 mol dm ⁻³ solution of KMnO ₄ he end point of the reaction, the volume of KMnO ₄ solution added was 18.70 | | | (i) | State the colour change that occurs at the end point of this titration and give a reason for the colour change. | | | | | | | | | | | | | (ii) Write an equation for the reaction between iron(II) ions and manganate(VII) | | ions. | | |------------|--|------------------| | | Use this equation and the information given to calculate the concentration iron(II) ions in the original solution ${\bf X}$. | of | (Total | (5)
11 marks) | | | (Total | i i iliai kə | | | | | | | | | | Q2.Transit | tion metal compounds have a range of applications as catalysts. | | | (a) | State the general property of transition metals that allows the vanadium in vanadium(V) oxide to act as a catalyst in the Contact Process. | | | | | | | | | (1) | | | | | | (b) | Write two equations to show how vanadium(V) oxide acts as a catalyst in the Contact Process. | | | | Equation 1 | | | | | | | | | | | | Equation 2 | | | | | | | | | | | | | (2) | | (c) | In th | ne Contact Process, vanadium(V) oxide acts as a heterogeneous catalyst. | | |-----|-------|--|-----| | | (i) | Give the meaning of the term <i>heterogeneous</i> . | | | | | | | | | | | | | | | | (4) | | | | | (1) | | | | | | | | (ii) | Give one reason why impurities in the reactants can cause problems in processes that use heterogeneous catalysts. | | | | | | | | | | | | | | | | (1) | | | | | (-, | | | | | | | (d) | | oxidation of $C_2O_4{}^{2-}$ ions by $MnO_4{}^-$ ions in acidic solution is an example of a tion that is autocatalysed. | | | | (i) | Give the meaning of the term autocatalysed. | | | | | | | | | | | | | | | | (1) | | | | | (', | | | | | | | | (ii) | Identify the autocatalyst in this reaction. | | | | | | (1) | | | | | | | | | | | | | (iii) | Write two equations to show how the autocatalyst is involved in this oxidation of $C_2O_4{}^{2-}$ ions. | | | | | Equation 1 | | | Equation 2 | | |---|---------------------| | (Т | (2)
otal 9 marks | | Q3. This question explores some reactions and some uses of cobalt compounds. | | | (a) Ethanal is oxidised to ethanoic acid by oxygen. The equation for this realis | ction | | 2CH₃CHO + O₂ → 2CH₃COOH This redox reaction is slow at room temperature but speeds up in the presence cobalt compounds. Explain why a cobalt compound is able to act as a catalyst for this process. Illustrate your explanation with two equations to suggest how, in the presence water and hydrogen ions, Co³⁺ and then Co²⁺ ions could be involved in catalysin reaction. | of | | | | | | | | | | | | (4) | | | | - (b) In aqueous solution, the $[Co(H_2O)_6]^{2+}$ ion reacts with an excess of ethane-1,2-diamine to form the complex ion Y. - (i) Write an equation for this reaction. | | preference to the $[Co(H_2O)_6]^{2+}$ complex ion. | | |--------------|---|-----| (3) | | <i>,</i> ,,, | | | | (ii) | Draw a diagram that shows the shape of the complex ion Y and shows the type of bond between the ethane-1,2-diamine molecules and the cobalt. | (3) | | | | | | | mpound Z is a complex that contains only cobalt, nitrogen, hydrogen and orine. | | | | olid sample of Z was prepared by reaction of 50 cm³ of 0.203 mol dm⁻³ aqueous alt(II) chloride with ammonia and an oxidising agent followed by hydrochloric I. | | | | en this sample of Z was reacted with an excess of silver nitrate, 4.22 g of silver oride were obtained. | | | Use | this information to calculate the mole ratio of chloride ions to cobalt ions in Z . | | | | e the formula of the complex cobalt compound Z that you would expect to be ned in the preparation described above. | | | _ | gest one reason why the mole ratio of chloride ions to cobalt ions that you have | | (c) | | 5) | |-----------------|----| | (Total 15 marks | | **Q4.**The table below shows some successive ionisation energy data for atoms of three different elements **X**, **Y** and **Z**. Elements X, Y and Z are Ca, Sc and V but not in that order. | | First | Second | Third | Fourth | Fifth | Sixth | |---|-------|--------|-------|--------|-------|--------| | X | 648 | 1370 | 2870 | 4600 | 6280 | 12 400 | | Υ | 590 | 1150 | 4940 | 6480 | 8120 | 10 496 | | Z | 632 | 1240 | 2390 | 7110 | 8870 | 10 720 | (a) Which element is calcium? х 🕒 v 🔼 z (1) | (b) | Which element is vanadium? | | |-----|---|----| | | X | | | | Y | | | | z | (1 | | (c) | Justify your choice of vanadium in part (b) | | | | | | | | | (1 | | (d) | An acidified solution of NH₄VO₃ reacts with zinc. | | | | Explain how observations from this reaction show that vanadium exists in at least two different oxidation states. | | | | | | | | | | | | | | | | | (2 | | (e) | The vanadium in 50.0 cm³ of a 0.800 mol dm⁻³ solution of NH₄VO₃ reacts with 506 cm³ of sulfur(IV) oxide gas measured at 20.0 °C and 98.0 kPa. | | | | Use this information to calculate the oxidation state of the vanadium in the solution after the reduction reaction with sulfur(IV) oxide. Explain your working. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. | | | Oxidation state =(Total | (6)
11 marks) | |--|------------------| | Q5. When iodine molecules are dissolved in aqueous solutions containing iodide ions, they re to form triiodide ions (I ₃ -). | act | | ₂ + ⁻ → ₃ ⁻ | | | The reaction above between I^- ions and $S_2O_8^{2-}$ ions has a high activation energy and $S_2O_8^{2-}$ ionare only reduced slowly to SO_4^{2-} ions. The reaction is catalysed by Fe^{2^+} ions. | าร | | (a) Explain why the reaction between I^- ions and $S_2O_8^{2-}$ ions is slow. | | | | | | | | | | (1) | | (b) Other than having variable oxidation states, explain why Fe ²⁺ ions are good catalysts for this reaction. | | | | | | | | | | (1) | | (d) Construct an overall equation for the reaction between S ₂ O ₆ ²⁻ ions and I ⁻ ions. (1) (Total 4 marks) A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm³ solution of K ₂ Cr ₂ O ₇ | (c) | Write a half-equation for the reduction of $S_2O_8^{2-}$ ions to SO_4^{2-} ions. | | |---|---------------------------|---|--| | A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O ₇ | | | (1 | | (1) (Total 4 marks) A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ | (d) | Construct an overall equation for the reaction between $S_2O_8^{2-}$ ions and I^- ions. | ons.
 | | A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ | | | | | The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm¬³ solution of K₂Cr₂O٫ | | |
(1
(Total 4 marks | | | | | | | | The
250
The | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this | ade up to
s solution
s sample of | | | The
250
The
reac | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X . | ade up to s solution s sample of | | | The
250
The
reac | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this eted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X . | ade up to s solution s sample of | | | The
250
The
reac | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this sted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X . | ade up to s solution s sample of | | | The
250
The
reac | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X . | ade up to s solution s sample of | | | The
250
The
reac | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X . | ade up to s solution s sample of | | | The
250
The
reac | student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X . | ade up to s solution s sample of | | | | (5) | |-----|---|--------------| | (b) | The student found that the calculated mass of FeSO ₄ .7H ₂ O was greater than the actual mass of the sample that had been weighed out. The student realised that this could be due to the nature of the impurity. | | | | Suggest one property of an impurity that would cause the calculated mass of FeSO ₄ .7H ₂ O in X to be greater than the actual mass of X . Explain your answer. | | | | | | | | | | | | | | | | (Total 7 ma | (2)
arks) |