(a)		e presence of these ions can be confirmed by reacting separate samples of ution X with aqueous ammonia and with aqueous sodium carbonate.
	Writ	te equations for each of these reactions and describe what you would observe.
(b)		0.0 cm ³ sample of solution X was added to 50 cm ³ of dilute sulfuric acid and de up to 250 cm ³ of solution in a volumetric flask.
	A 25	5.0 cm ³ sample of this solution from the volumetric flask was titrated with a 205 mol dm ⁻³ solution of KMnO ₄ he end point of the reaction, the volume of KMnO ₄ solution added was 18.70
	(i)	State the colour change that occurs at the end point of this titration and give a reason for the colour change.

(ii) Write an equation for the reaction between iron(II) ions and manganate(VII)

	ions.	
	Use this equation and the information given to calculate the concentration iron(II) ions in the original solution ${\bf X}$.	of
	(Total	(5) 11 marks)
	(Total	i i iliai kə
Q2.Transit	tion metal compounds have a range of applications as catalysts.	
(a)	State the general property of transition metals that allows the vanadium in vanadium(V) oxide to act as a catalyst in the Contact Process.	
		(1)
(b)	Write two equations to show how vanadium(V) oxide acts as a catalyst in the Contact Process.	
	Equation 1	
	Equation 2	
		(2)

(c)	In th	ne Contact Process, vanadium(V) oxide acts as a heterogeneous catalyst.	
	(i)	Give the meaning of the term <i>heterogeneous</i> .	
			(4)
			(1)
	(ii)	Give one reason why impurities in the reactants can cause problems in processes that use heterogeneous catalysts.	
			(1)
			(-,
(d)		oxidation of $C_2O_4{}^{2-}$ ions by $MnO_4{}^-$ ions in acidic solution is an example of a tion that is autocatalysed.	
	(i)	Give the meaning of the term autocatalysed.	
			(1)
			(',
	(ii)	Identify the autocatalyst in this reaction.	
			(1)
	(iii)	Write two equations to show how the autocatalyst is involved in this oxidation of $C_2O_4{}^{2-}$ ions.	
		Equation 1	

Equation 2	
(Т	(2) otal 9 marks
Q3. This question explores some reactions and some uses of cobalt compounds.	
(a) Ethanal is oxidised to ethanoic acid by oxygen. The equation for this realis	ction
 2CH₃CHO + O₂ → 2CH₃COOH This redox reaction is slow at room temperature but speeds up in the presence cobalt compounds. Explain why a cobalt compound is able to act as a catalyst for this process. Illustrate your explanation with two equations to suggest how, in the presence water and hydrogen ions, Co³⁺ and then Co²⁺ ions could be involved in catalysin reaction. 	of
	(4)

- (b) In aqueous solution, the $[Co(H_2O)_6]^{2+}$ ion reacts with an excess of ethane-1,2-diamine to form the complex ion Y.
 - (i) Write an equation for this reaction.

	preference to the $[Co(H_2O)_6]^{2+}$ complex ion.	
		(3)
<i>,</i> ,,,		
(ii)	Draw a diagram that shows the shape of the complex ion Y and shows the type of bond between the ethane-1,2-diamine molecules and the cobalt.	
		(3)
	mpound Z is a complex that contains only cobalt, nitrogen, hydrogen and orine.	
	olid sample of Z was prepared by reaction of 50 cm³ of 0.203 mol dm⁻³ aqueous alt(II) chloride with ammonia and an oxidising agent followed by hydrochloric I.	
	en this sample of Z was reacted with an excess of silver nitrate, 4.22 g of silver oride were obtained.	
Use	this information to calculate the mole ratio of chloride ions to cobalt ions in Z .	
	e the formula of the complex cobalt compound Z that you would expect to be ned in the preparation described above.	
_	gest one reason why the mole ratio of chloride ions to cobalt ions that you have	

(c)

	5)
(Total 15 marks	

Q4.The table below shows some successive ionisation energy data for atoms of three different elements **X**, **Y** and **Z**.

Elements X, Y and Z are Ca, Sc and V but not in that order.

	First	Second	Third	Fourth	Fifth	Sixth
X	648	1370	2870	4600	6280	12 400
Υ	590	1150	4940	6480	8120	10 496
Z	632	1240	2390	7110	8870	10 720

(a) Which element is calcium?

х 🕒

v 🔼

z

(1)

(b)	Which element is vanadium?	
	X	
	Y	
	z	(1
(c)	Justify your choice of vanadium in part (b)	
		(1
(d)	An acidified solution of NH₄VO₃ reacts with zinc.	
	Explain how observations from this reaction show that vanadium exists in at least two different oxidation states.	
		(2
(e)	The vanadium in 50.0 cm³ of a 0.800 mol dm⁻³ solution of NH₄VO₃ reacts with 506 cm³ of sulfur(IV) oxide gas measured at 20.0 °C and 98.0 kPa.	
	Use this information to calculate the oxidation state of the vanadium in the solution after the reduction reaction with sulfur(IV) oxide. Explain your working. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	

Oxidation state =(Total	(6) 11 marks)
Q5. When iodine molecules are dissolved in aqueous solutions containing iodide ions, they re to form triiodide ions (I ₃ -).	act
₂ + ⁻ → ₃ ⁻	
The reaction above between I^- ions and $S_2O_8^{2-}$ ions has a high activation energy and $S_2O_8^{2-}$ ionare only reduced slowly to SO_4^{2-} ions. The reaction is catalysed by Fe^{2^+} ions.	าร
(a) Explain why the reaction between I^- ions and $S_2O_8^{2-}$ ions is slow.	
	(1)
(b) Other than having variable oxidation states, explain why Fe ²⁺ ions are good catalysts for this reaction.	
	(1)

(d) Construct an overall equation for the reaction between S ₂ O ₆ ²⁻ ions and I ⁻ ions. (1) (Total 4 marks) A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm³ solution of K ₂ Cr ₂ O ₇	(c)	Write a half-equation for the reduction of $S_2O_8^{2-}$ ions to SO_4^{2-} ions.	
A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O ₇			(1
(1) (Total 4 marks) A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫	(d)	Construct an overall equation for the reaction between $S_2O_8^{2-}$ ions and I^- ions.	ons.
A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, X . The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫			
The student recorded the mass of X . This sample was dissolved in water and made up to 250 cm³ of solution. The student found that, after an excess of acid had been added, 25.0 cm³ of this solution reacted with 21.3 cm³ of a 0.0150 mol dm¬³ solution of K₂Cr₂O٫			 (1 (Total 4 marks
	The 250 The	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this	ade up to s solution s sample of
	The 250 The reac	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X .	ade up to s solution s sample of
	The 250 The reac	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this eted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X .	ade up to s solution s sample of
	The 250 The reac	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this sted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X .	ade up to s solution s sample of
	The 250 The reac	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X .	ade up to s solution s sample of
	The 250 The reac	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X .	ade up to s solution s sample of
	The 250 The reac	student recorded the mass of X . This sample was dissolved in water and m cm³ of solution. student found that, after an excess of acid had been added, 25.0 cm³ of this cted with 21.3 cm³ of a 0.0150 mol dm⁻³ solution of K₂Cr₂O٫ Use this information to calculate a value for the mass of FeSO₄.7H₂O in the X .	ade up to s solution s sample of

		(5)
(b)	The student found that the calculated mass of FeSO ₄ .7H ₂ O was greater than the actual mass of the sample that had been weighed out. The student realised that this could be due to the nature of the impurity.	
	Suggest one property of an impurity that would cause the calculated mass of FeSO ₄ .7H ₂ O in X to be greater than the actual mass of X . Explain your answer.	
	(Total 7 ma	(2) arks)